Skip to main content
Log in

Experimental study and neural network-based prediction of thermal performance of applying baffles and nanofluid in the double-pipe heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study’s goal was to investigate the efficiency of applying carbon/water Nanofluid and triangular baffles in the double-tube heat exchangers. The Reynolds number was in the range of 4000 to 14,000, and the carbon/water Nanofluid, which was with various volume fractions ranged between 0.1 and 0.3 volume percentages, was applied. Moreover, triangular baffles were implemented as turbulators with the numbers of 4, 8, and 12, as well as angles of 70\(^\circ\) and 40\(^\circ\). Using the response surface method, the experiments design was carried out. The prediction process was eventually conducted using Perceptron artificial neural network that included the input data of Reynolds number, Nanofluids volume fraction, baffles number and angle, as well as Nusselt number target. Results showed that the simultaneous use of 12 triangular baffles at the 40\(^\circ\) angle and a Nanofluid with a 0.3 volume fraction led to the 35% increase in Nusselt number compared to applying smooth tubes and water-based fluid. The coefficient of friction with a 0.3% volume fraction of Nanofluid associated with 12 triangular baffles at a 40\(^\circ\) angle was, respectively, 5–10% and 1.5 times higher than that of the water flow within a smooth tube without the presence of baffles and Nanofluids. Moreover, results of Perceptron artificial neural network showed that applying a 1-32-4 topology and Levenberg–Marquardt algorithm would derive 0.98828 and 3.6275 values for the mean squared error (MSE) and coefficient of correlation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

C p :

Specific heat (kJ kg1 °C1)

d :

Diameter (m)

h :

Convective heat transfer coefficient (W m2ok1)

k :

Thermal conductivity (W m1 K1)

L :

Tube length (m)

m o :

Mass flow rate (kg s1)

Nu:

Nusselt number (Dimensionless)

TPF:

Thermal performance factor

MSE:

Mean squared error

Q :

Heat transfer rate (W)

Re:

Reynolds number (Dimensionless)

T :

Temperature (oC)

V :

Velocity (ms1)

f :

Friction factor

pr:

Prandtl number (Dimensionless)

\({\Delta T}_{{\text{lm}}}\) :

Logarithmic mean temperature difference (oC)

\({\Delta P}_{{\text{nf}}}\) :

Pressure drop

\(\rho\) :

Density (kg m3)

\(\varphi\) :

Nanoparticle volume concentration (Dimensionless)

\(\mu\) :

Viscosity

h:

Hot

c:

Cold

f:

Fluid

i:

Inlet

nf:

Nanofluid

bf:

Base fluid

o:

Outlet

p:

Particles

w:

Wall

b:

Bulk

References

  1. Kumar R, Kumar A, Sharma A, Chauhan R, Sethi M. Experimental study of heat transfer enhancement in a rectangular duct distributed by multi V-perforated baffle of different relative baffle width. Heat Mass Transf. 2017;53:1289–304.

    Article  Google Scholar 

  2. Ghobadi B, Kowsary F, Veysi F. The influence of geometric parameters of baffle on the flow and heat transfer of Al2O3/water nanofluid in a tube with rectangular baffle. Int Nano Lett. 2021;11:395–404.

    Article  CAS  Google Scholar 

  3. Wang WH, Cheng DL, Liu T, Liu YH. Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger. J Central South Univ. 2016;23:2720–7.

    Article  CAS  Google Scholar 

  4. Ghobadi B, Kowsary F, Veysi F. Heat transfer enhancement using rectangular and triangular shaped baffles with and without nanofluid: new insight into optimization of flow geometric parameters. Prot Met Phys Chem Surf. 2022;58(3):486–500.

    Article  CAS  Google Scholar 

  5. Hazbehian M, Maddah H, Mohammadiun H, Alizadeh M. Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid. Heat Mass Transf. 2016;52:2515–29.

    Article  CAS  Google Scholar 

  6. Ghasemi N, Aghayari R, Maddah H. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and aluminum oxide nanofluid using central composite design method. Heat Mass Transf. 2018;54:2113–30.

    Article  CAS  Google Scholar 

  7. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Phys A. 2020;551:124127.

    Article  CAS  Google Scholar 

  8. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transfer. 2019;104:33–40.

    Article  CAS  Google Scholar 

  9. Ghasemi N, Maddah H, Mohebbi M, Aghayari R, Rohani S. Proposing a method for combining monitored multilayered perceptron (MLP) and self-organizing map (SOM) neural networks in prediction of heat transfer parameters in a double pipe heat exchanger with nanofluid. Heat Mass Transf. 2019;55:2261–76.

    Article  CAS  Google Scholar 

  10. Kumaresan G, Santosh R, Duraisamy P, Venkatesan R, Kumar NS. Numerical analysis of baffle cut on shell side heat exchanger performance with inclined baffles. Heat Transfer Eng. 2018;39(13–14):1156–65.

    Article  CAS  Google Scholar 

  11. Zhang X, Han D, He W, Yue C, Pu W. Numerical simulation on a novel shell-and-tube heat exchanger with screw cinquefoil orifice baffles. Adv Mech Eng. 2017;9(8):1687814017717665.

    Article  Google Scholar 

  12. Xiao Q, Yang N, Zhao Z, Dai C, Wu J, Bai F, Tao M (2016) 3-D Numerical simulation of the vapor-liquid flow at the shell side of shell-and-tube heat exchangers. Paper presented at the 2016 24th international conference on nuclear engineering

  13. El Maakoul A, Laknizi A, Saadeddine S, Abdellah AB, Meziane M, El Metoui M. Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy Convers Manag. 2017;133:76–86.

    Article  Google Scholar 

  14. Rao JBB, Raju VR. Numerical and heat transfer analysis of shell and tube heat exchanger with circular and elliptical tubes. Int J Mech Mater Eng. 2016;11:1–18.

    Article  Google Scholar 

  15. Wongcharee K, Eiamsa-ard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transfer. 2012;39(2):251–7.

    Article  CAS  Google Scholar 

  16. Rosta Abkenar A, Mohhades Deylami H, Dolati F. Experimental investigation of flow and heat transfer in a smooth channel affected by vortex generator with a punched hole. Amirkabir J Mech Eng. 2018;50(2):271–84.

    Google Scholar 

  17. Sheikhzadeh GA, Barzoki FN, Arani AAA, Pourfattah F. Wings shape effect on behavior of hybrid nanofluid inside a channel having vortex generator. Heat Mass Transf. 2019;55:1969–83.

    Article  CAS  Google Scholar 

  18. Han H, Wang S, Sun L, Li Y, Wang S. Numerical study of thermal and flow characteristics for a fin-and-tube heat exchanger with arc winglet type vortex generators. Int J Refrig. 2019;98:61–9.

    Article  Google Scholar 

  19. Abdollahi A, Shams M. Optimization of shape and angle of attack of winglet vortex generator in a rectangular channel for heat transfer enhancement. Appl Therm Eng. 2015;81:376–87.

    Article  Google Scholar 

  20. Murthy HS, Hegde RN. Heat transfer studies on double tube heat exchanger with combined effect of propeller insert and water-based go and Al2O3 nanofluids. Sādhanā. 2022;47(3):143.

    Article  Google Scholar 

  21. Promvonge P, Eiamsa-ard S, Wongcharee K, Chuwattanakul V, Samruaisin P, Chokphoemphun S, Eiamsa-ard P. Characterization of heat transfer and artificial neural networks prediction on overall performance index of a channel installed with arc-shaped baffle turbulators. Case Stud Therm Eng. 2021;26:101067.

    Article  Google Scholar 

  22. Yaningsih I, Wijayanta AT, Miyazaki T, Koyama S. Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int J Therm Sci. 2018;134:355–62.

    Article  Google Scholar 

  23. Rashidi MM, Nazari MA, Mahariq I, Assad MEH, Ali ME, Almuzaiqer R. Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study. Nanomaterials. 2021;11(11):3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghalandari M, Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, El Haj Assad M. Applications of intelligent methods in various types of heat exchangers: a review. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10425-3.

    Article  Google Scholar 

  25. Kuosa M, Aalto M, Assad MEH, Mäkilä T, Lampinen M, Lahdelma R. Study of a district heating system with the ring network technology and plate heat exchangers in a consumer substation. Energy Build. 2014;80:276–89.

    Article  Google Scholar 

  26. Maleki A, Elahi M, Assad MEH, Alhuyi Nazari M, Safdari Shadloo M, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2021;143:4261–72.

    Article  CAS  Google Scholar 

  27. Basit Shafiq M, Allauddin U, Qaisrani MA, Rehman TU, Ahmed N, Usman Mushtaq M, Ali HM. Thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim. 2022;147(21):12111–26.

    Article  CAS  Google Scholar 

  28. Mazdak S, Sheikhzadeh GA, Fattahi A. Numerical analysis of a heat exchanger with curved segmental baffle and Cassini oval cross-section tubes in various bundle arrangements. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12062-y.

    Article  Google Scholar 

  29. Samruaisin P, Maza R, Thianpong C, Chuwattanakul V, Maruyama N, Hirota M, Eiamsa-ard S. Enhanced heat transfer of a heat exchanger tube installed with V-shaped delta-wing baffle turbulators. Energies. 2023;16(13):5237.

    Article  CAS  Google Scholar 

  30. Dhumal GS, Havaldar SN. Enhancing heat transfer performance in a double tube heat exchanger: experimental study with twisted and helical tapes. Case Stud Therm Eng. 2023;51:103613.

    Article  Google Scholar 

  31. Akalin GO, Oztuna Taner O, Taner T. The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films. Polym Bull. 2022;79(6):3495–512.

    Article  CAS  Google Scholar 

  32. Oztuna Taner O, Ekici L, Akyuz L. CMC-based edible coating composite films from Brewer’s spent grain waste: a novel approach for the fresh strawberry package. Polym Bull. 2023;80(8):9033–58.

    Article  CAS  Google Scholar 

  33. Dalkiliç AS. A review of flow boiling in mini and microchannel for enhanced geometries. J Therm Eng. 2018;4(3):2037–74.

    Article  Google Scholar 

  34. Dalkilic AS. Parametric study of energy, exergy and thermoeconomic analyses on vapor-compression system cascaded with libr/water and nh3/water absorbtion cascade refrigeration cycle. Anadolu Univ J Sci Technol A-Appl Sci Eng. 2017;18(1):78–96.

    Google Scholar 

  35. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–67.

    Google Scholar 

  36. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Transfer. 1970;6:503–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heydar Maddah, Mohammad Hossein Ahmadi or Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadang, A., Nazari, M., Maddah, H. et al. Experimental study and neural network-based prediction of thermal performance of applying baffles and nanofluid in the double-pipe heat exchangers. J Therm Anal Calorim 149, 4239–4259 (2024). https://doi.org/10.1007/s10973-024-12969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12969-0

Keywords

Navigation