Skip to main content
Log in

Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A:

Heat transfer area (m2)

Cp:

Specific heat (kJ kg−1 °C−1)

D:

Tube diameter (m)

d:

Nanoparticle diameter (m)

h:

Convective heat transfer coefficient (W m-2oC−1)

k:

Thermal conductivity (W m-1oC−1)

L:

Tube length (m)

mo :

Mass flow rate (kg s−1)

Nu:

Nusselt number (Dimensionless)

Pe:

Peclet number (Dimensionless)

Pr:

Prandtl number (Dimensionless)

Re:

Reynolds number (Dimensionless)

T:

Temperature (°C)

U:

Overall heat transfer coefficient (W m-2oC−1)

w:

Width

R2 reg :

Registered correlation coefficient

R2 Adj :

Adjusted correlation coefficient

R2 Pred :

Predicted correlation coefficient

F Value:

F distribution-a mathematical function

P value:

P distribution -a mathematical function

w:

Weight fraction (%)

V:

Velocity (m2 s−1)

F:

Friction factor

Nu:

Nusselt number

Δ:

Thickness

∆P nf :

Pressure drop (Pa)

α :

Thermal diffusivity (m2/s)

ρ :

Density (kg m−3)

ϑ :

Kinematic viscosity (m2/s)

φ V :

Nanoparticle volume concentration (%)

ANOVA:

Analysis of variance

CCD:

Central composite design

CFD:

Computational fluid dynamics

SEM:

Scanning electron microscope

TEM:

Transmission electronic microscope

PRESS:

Prediction error of sum of squares

3D:

Three dimensional

2D:

two dimensional

ANN:

Artificial neural network

GPR:

Geometrical progression ratio

RGPR:

Reducer geometrical progression ratio

RSM:

Response surface methodology

References

  1. Gunes S, Manay E, Senyigit E, Ozceyhan VA (2001) Taguchi approach for optimization of design parameters in a tube with coiled wire inserts. Appl Thermal Eng 31(14–15):2568–2577

    Google Scholar 

  2. Huai H, Bing X, Hao W, We S (2015) Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. Int J Therm Sci 90:173–186

    Article  Google Scholar 

  3. Maddah H, Ghasemi N, Keyvani B, Cheraghali R (2017) Experimental and numerical study of nanofluid in heat exchanger fitted by modified twisted tape: exergy analysis and ANN prediction model. Heat Mass Transf 53(4):1413–1423

    Article  Google Scholar 

  4. Maddah H, Ghasemi N (2017) Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Transf. https://doi.org/10.1007/s00231-017-2068-6

  5. Chamoli S, Yu P, Yu S (2017) Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts. Appl Therm Eng 117:708–724

    Article  Google Scholar 

  6. Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R (2017) Numerical Investigation of Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled With Nanofluid: A Sensitivity Analysis by Response Surface Methodology. Powder Technol 313:99–111

    Article  Google Scholar 

  7. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S (2017) Multi-Objective Optimization of Nanofluid Flow in Double Tube Heat Exchangers for Applications in Energy Systems. Energy. https://doi.org/10.1016/j.energy.2017.06.104

  8. Mohammadiun H, Mohammadiun M, Hazbehian M, Maddah H (2016) Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes. Heat Mass Transfer J 52(1):141–151(8)

    Article  Google Scholar 

  9. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P (2010) Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Commun Heat Mass Transf 37:39–46(9)

    Article  MATH  Google Scholar 

  10. Myers R (1976) Response surface methodology. Edwards Brothers, Ann Arbor, MI

    Google Scholar 

  11. Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R (2016) Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J Mol Liq 220:888–901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Ghasemi.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

A systematic error analysis was used to estimate the errors in the experimental analysis. The uncertainties calculated with the maximum possible error for the parameters and various instruments are given in Tables 6 and 7, respectively.

  1. (a)

    Reynolds number

Table 6 Uncertainties of parameters
Table 7 Uncertainties of experimental instruments
$$ \mathit{\operatorname{Re}}=\frac{4{m}^{\bullet }}{\pi D\mu},\kern2em \frac{U_{Re}}{\operatorname{Re}}=\left(\sqrt{{\left(\frac{U_{\dot{m}}}{\dot{m}}\right)}^2}+\sqrt{{\left(\frac{U_{\mu }}{\mu}\right)}^2}\right)\sqrt{{\left(\frac{U_{\dot{m}}}{\dot{m}}\right)}^2+{\left(\frac{U_{\mu }}{\mu}\right)}^2}=\sqrt{\left({0.0001}^2\right)+\left({0.01}^2\right)}=0.01\% $$
  1. (b)

    Heat transfer coefficient

$$ \mathrm{h}=\frac{q}{T_w-{T}_b},\frac{U_h}{\mathrm{h}}=\sqrt{{\left(\frac{U_q}{q}\right)}^2+{\left(\frac{U_{T_w}-{T}_b}{T_w-{T}_b}\right)}^2}=\sqrt{(0.2130)^2+{(0.0687)}^2}=0.2238\% $$
  1. (c)

    Nusselt number

$$ Nu=\frac{hD}{K}\kern1em ,\kern0.75em \frac{U_{Nu}}{Nu}=\sqrt{{\left(\frac{U_h}{h}\right)}^2+{\left(\frac{U_K}{K}\right)}^2}=\sqrt{(0.1876)^2+{(0.08)}^2}=0.2039\% $$

(d) Friction factor

$$ f=\frac{\Delta \mathrm{p}}{\left(\frac{\mathrm{L}}{\mathrm{D}}\right)\left(\frac{\uprho {\mathrm{V}}^2}{2}\right)},\frac{{\mathrm{U}}_{\mathrm{f}}}{\mathrm{f}}=\sqrt{{\left(\frac{{\mathrm{U}}_{\Delta \mathrm{P}}}{\Delta \mathrm{P}}\right)}^2+{\left(\frac{{\mathrm{U}}_{\uprho}}{\uprho}\right)}^2+{\left(\frac{2{\mathrm{U}}_{\mathrm{V}}}{\mathrm{V}}\right)}^2}=\sqrt{(0.002114)^2+{(0.081)}^2+{\left(2\times 0.0001\right)}^2}=0.08102\% $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, N., Aghayari, R. & Maddah, H. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method. Heat Mass Transfer 54, 2113–2130 (2018). https://doi.org/10.1007/s00231-018-2292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2292-8

Navigation