Skip to main content
Log in

The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Edible film production from natural biodegradable polymers that will not cause environmental waste problems has been increasing in recent years. Antibacterial materials can be added to these films to increase the shelf life and quality of products. In this work, chitosan-based and chitosan/pectin-based silver nanoparticle films which has eco-friendly and antibacterial properties were synthesized. The morphological test of the prepared films was performed by scanning electron microscope and transmission electron microscope. The presence of silver element was detected by energy-dispersive X-ray. Thermal analysis was tested with thermogravimetric analysis and differential scanning calorimeter analyzer. The crystallinity (%) of films was determined with X-ray diffraction analyzer. The presence of pectin increased the thermal stability and crystallinity%. The mechanical tests were examined with Zwick universal testing machine and the content of pectin improved the mechanical properties of film. The antibacterial test was done toward Gram-negative bacteria (Escherichia coli). Chitosan/pectin-based films compared with chitosan-based film displayed long-lasting antibacterial activity against E.coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303. https://doi.org/10.1016/j.tifs.2011.02.004

    Article  CAS  Google Scholar 

  2. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  3. Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol 1:415–448. https://doi.org/10.1146/annurev.food.080708.100836

    Article  CAS  PubMed  Google Scholar 

  4. Guilbert S, Gontard N, Gorris LG (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT 29(1–2):10–17. https://doi.org/10.1006/fstl.1996.0002

    Article  CAS  Google Scholar 

  5. Dhanapal A, Sasikala P, Rajamani L, Kavitha V, Yazhini G, Banu MS (2012) Edible films from polysaccharides. Food Sci Qual Manag 3:2224–6088

    Google Scholar 

  6. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  7. Kumar D, KumarP PJ (2018) Binary grafted chitosan film: synthesis, characterization, antibacterial activity and prospects for food packaging. Int J Biol Macromol 115:341–348. https://doi.org/10.1016/j.ijbiomac.2018.04.084

    Article  CAS  PubMed  Google Scholar 

  8. Abdollahi M, Rezaei M, Farzi G (2012) Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int J Food Sci 47(4):847–853. https://doi.org/10.1111/j.1365-2621.2011.02917.x

    Article  CAS  Google Scholar 

  9. Babbar N, Dejonghe W, Gatti M, Sforza S, Elst K (2016) Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol 36(4):594–606. https://doi.org/10.3109/07388551.2014.996732

    Article  CAS  PubMed  Google Scholar 

  10. Perussello CA, Zhang Z, Marzocchella A, Tiwari BK (2017) Valorization of apple pomace by extraction of valuable compounds. Compr Rev Food Sci Food Saf 16(5):776–796. https://doi.org/10.1111/1541-4337.12290

    Article  CAS  PubMed  Google Scholar 

  11. Grassino AN, Barba FJ, Brnčić M, Lorenzo JM, Lucini L, Brnčić SR (2018) Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: a review. Food Chem 266:47–55. https://doi.org/10.1016/j.foodchem.2018.05.105

    Article  CAS  PubMed  Google Scholar 

  12. Christiaens S, Van Buggenhout S, Houben K, Jamsazzadeh Kermani Z, Moelants KR, Ngouemazong ED, Loey AV, Hendrickx ME (2016) Process–structure–function relations of pectin in food. Crit Rev Food Sci Nutr 56(6):1021–1042. https://doi.org/10.1080/10408398.2012.753029

    Article  CAS  PubMed  Google Scholar 

  13. Miguez B, Gómez B, Gullón P, Gullón B, Alonso JL (2016) Pecticoligosaccharides and other emerging prebiotics. In probiotics and prebiotics in human nutrition and health. Intech Open 15:301–330. https://doi.org/10.5772/62830

    Article  CAS  Google Scholar 

  14. Maric M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Rimac Brnčić S (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and byproducts: Ultrasound-, microwaves-, and enzymeassisted extraction. Trends Food Sci Technol 76:28–37. https://doi.org/10.1016/j.tifs.2018.03.022

    Article  CAS  Google Scholar 

  15. Holck J, Hotchkiss AT, Meyer AS, Mikkelsen JD, Rastall RA (2014) Production and bioactivity of pectic oligosaccharides from fruit and vegetable biomass. Food Oligosacch Prod, Anal Bioact. https://doi.org/10.1002/9781118817360.ch5

    Article  Google Scholar 

  16. Gómez B, Yáñez R, Parajó JC, Alonso JL (2016) Production of pectin-derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. J Chem Technol Biotechnol 91(1):234–247. https://doi.org/10.1002/jctb.4569

    Article  CAS  Google Scholar 

  17. Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH (2017) Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 93(11):127. https://doi.org/10.1093/femsec/fix127

    Article  CAS  Google Scholar 

  18. Min YW, Park SU, Jang YS, Kim YH, Rhee PL, Ko SH, Joo N, Kim SI, Kim CH, Chang DK (2012) Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis. WJG, World J Gastroenterol 18(33):4563–4569. https://doi.org/10.3748/wjg.v18.i33.4563

    Article  PubMed  Google Scholar 

  19. Ho YY, Lin CM, Wu MC (2017) Evaluation of the prebiotic effects of citrus pectin hydrolysate. J Food Drug Anal 25(3):550–558. https://doi.org/10.1016/j.jfda.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Vieira MGA, Silva MA, Santos LO (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  21. Morura CM, Moura JM, Santos JP, Kosinski RC, Dotto GL, Pinto LA (2012) Evaluation of mechanical properties and water vapor permeability in chitosan biofilms using sorbitol and glycerol. Macromol Symp 319:240–245. https://doi.org/10.1002/masy.201100128

    Article  CAS  Google Scholar 

  22. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67:833–848. https://doi.org/10.4315/0362-028X-67.4.833

    Article  CAS  PubMed  Google Scholar 

  23. Dogan U, Kasap E, Cetin D, Suludere Z, Boyaci IH, Turkyilmaz C, Ertas N, Tamer U (2016) Rapid detection of bacteria based on homogenous immunoassay using chitosan modified quantum dots. Sens Actuat B Chem 233:369–378. https://doi.org/10.1016/j.snb.2016.04.081

    Article  CAS  Google Scholar 

  24. Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W (2013) Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J 17(3):57–66. https://doi.org/10.4186/ej.2013.17.3.57

    Article  Google Scholar 

  25. Distantina S, Fahrurrozi M (2013) Synthesis of hydrogel film based on carrageenan extracted from Kappaphycus alvarezii. Mod Appl Sci 7(8):22. https://doi.org/10.5539/mas.v7n8p22

    Article  Google Scholar 

  26. Haima JS, Nair SN, Juliet S, Nisha AR, Dhanushkrishna BN (2021) Synthesis and characterisation of glutaraldehyde cross-linked κ-carrageenan-gelatin hydrogel. Int J Pharmacogn Phytochem 10(1):459–463

    CAS  Google Scholar 

  27. Sampath UTM, Ching YC, Chuah CH, Singh R, Lin PC (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24(5):2215–2228. https://doi.org/10.1007/s10570-017-1251-8

    Article  CAS  Google Scholar 

  28. Altun T (2020) Preparation and application of glutaraldehyde cross-linked chitosan coated bentonite clay capsules: chromium (VI) removal from aqueous solution. J Chil Chem Soc 65(2):4790–4797. https://doi.org/10.4067/S0717-97072020000204790

    Article  CAS  Google Scholar 

  29. Dogan Ü, Çiftçi H, Cetin D, Suludere Z, Tamer U (2017) Nanoparticle embedded chitosan film for agglomeration free TEM images. Microsc Res Tech 80(2):163–166. https://doi.org/10.1002/jemt.22792

    Article  CAS  PubMed  Google Scholar 

  30. Kalaycıoğlu Z, Torlak E, Akın-Evingür G, Özen İ, Erim FB (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888. https://doi.org/10.1016/j.ijbiomac.2017.03.174

    Article  CAS  PubMed  Google Scholar 

  31. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171. https://doi.org/10.1016/j.nano.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine 8(1):37–45. https://doi.org/10.1016/j.nano.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  33. dos Santos DS, Goulet PJ, Pieczonka NP, Oliveira ON, Aroca RF (2004) Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir 20(23):10273–10277. https://doi.org/10.1021/la048328j

    Article  CAS  PubMed  Google Scholar 

  34. Parvez S, Rahman MM, Khan MA, Khan MAH, Islam JM, Ahmed M, Rahman MF, Ahmed B (2012) Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym Bull 69(6):715–731. https://doi.org/10.1007/s00289-012-0761-7

    Article  CAS  Google Scholar 

  35. Maciel VBV, Yoshida CM, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohyd Polym 132:537–545. https://doi.org/10.1016/j.carbpol.2015.06.047

    Article  CAS  Google Scholar 

  36. Martínez-Hernández AL, Velasco-Santos C, de Icaza M, Castaño VM (2005) Microstructural characterization of keratin fibres from chicken feathers. Int J Environ Pollut 23:162–178. https://doi.org/10.1504/IJEP.2005.006858

    Article  Google Scholar 

  37. Mathew S, Brahmakumar M, Emilia Abraham T (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers 82:176–187. https://doi.org/10.1002/bip.20480

    Article  CAS  PubMed  Google Scholar 

  38. Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. LWT Food Sci Techn 41:1633–1641. https://doi.org/10.1016/j.lwt.2007.10.014

    Article  CAS  Google Scholar 

  39. Wani MY, Hasan N, Malik MA (2010) Chitosan and Aloe vera: Two gifts of nature. J Dispers Sci Technol 31:799–811. https://doi.org/10.1080/01932690903333606

    Article  CAS  Google Scholar 

  40. Uragami T, Tokura S (2006) Material science of chitin and chitosan. Springer, Kodansha, New York

    Book  Google Scholar 

  41. Sharma R, Ahuja M (2011) Thiolated pectin: synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydr Polym 85(3):658–663. https://doi.org/10.1016/j.carbpol.2011.03.034

    Article  CAS  Google Scholar 

  42. Kumar S, Dutta PK, Koh J (2011) A physico-chemical and biological study of novel chitosan–chloroquinoline derivative for biomedical applications. Int J Biol Macromol 49(3):356–361. https://doi.org/10.1016/j.ijbiomac.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  43. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res A 75(2):275–282. https://doi.org/10.1002/jbm.a.30414

    Article  CAS  PubMed  Google Scholar 

  44. Flores-Hernández CG, Colín-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, Garcia-Cassillas PE, Martínez-Hernández AL (2014) All green composites from fully renewable biopolymers: chitosan-starch reinforced with keratin from feathers. Polymers 6(3):686–705. https://doi.org/10.3390/polym6030686

    Article  CAS  Google Scholar 

  45. Hissae Yassue-Cordeiro P, Henrique Zandonai C, Pereira Genesi B, Santos Lopes P, Sanchez-Lopez E, Luisa Garcia M, Fernandes-Machado NRC, Severino P, Souto EB, Ferreira da Silva C (2019) Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics 11(10):535. https://doi.org/10.3390/pharmaceutics11100535

    Article  CAS  PubMed Central  Google Scholar 

  46. Kumar S, Koh J (2012) Physiochemical, optical, and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci 13(5):6102–6116. https://doi.org/10.3390/ijms13056102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hajji S, Salem RBSB, Hamdi M, Jellouli K, Ayadi W, Nasri M, Boufi S (2017) Nanocomposite films based on chitosan–poly (vinyl alcohol) and silver nanoparticles with high antibacterial and antioxidant activities. Process Saf Environ 111:112–121. https://doi.org/10.1016/j.psep.2017.06.018

    Article  CAS  Google Scholar 

  48. Men’Shikov DD, Lazareva EB, Popova TS, Shramko LU, Tokaev IS, Zalogueva GV, Gaponova IN (1997) Antimicrobial properties of pectins and their effects on antibiotics. Antibiot Khimioter 42(12):10–15

    CAS  PubMed  Google Scholar 

  49. Daoud Z, Sura M, Abdel-Massih RM (2013) Pectin shows antibacterial activity against Helicobacter pylori. Adv Biosci Biotechnol 4(2):273–277. https://doi.org/10.4236/abb.2013.42A037

    Article  Google Scholar 

  50. Abdel-Massih RM, Hawach V, Daoud Z (2015) Antibacterial and anti-proliferative activity of different forms of Citrus pectin. J Nutr Food Sci. https://doi.org/10.4172/2155-9600.S1.017

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Projects Coordination Unit of Aksaray University (Grant No 2018-058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulen Oytun Akalin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akalin, G.O., Oztuna Taner, O. & Taner, T. The preparation, characterization and antibacterial properties of chitosan/pectin silver nanoparticle films. Polym. Bull. 79, 3495–3512 (2022). https://doi.org/10.1007/s00289-021-03667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03667-0

Keywords

Navigation