Skip to main content
Log in

Co-combustion performance of oil palm biomass with coal: thermodynamics and kinetics analyses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper comprehensively assesses oil palm biomass and coal blends, focusing on evaluating thermodynamic and kinetics parameters. The experimental approach employs thermogravimetric differential thermal analysis (TG–DTA) with varying heating rates of 5, 10, 15, and 20 K min−1. Laboratory tests are conducted on six blended samples of different coal and oil palm biomass ratios. The evaluation encompasses key combustion parameters, including ignition index (Di), burnout index (Db), combustion performance index (S), reactivity (R), flammability index (C), and index of intensity (Hf). Additionally, thermodynamic parameters such as a change in enthalpy (ΔH), change in Gibbs free energy (ΔG), and change in entropy (ΔS) are analyzed. The results demonstrate that the optimal co-combustion material is a blend of 76% low-rank coal, 19% medium-rank coal, and 5% oil palm fronds, identified as L80M20F. This blend exhibits superior combustion performance, as evidenced by the highest values for Di (31.17 × 10–8% min−3), Db (28.91 × 10–11% min−3 K−1), and R (39.18 × 104 mg min−1). Furthermore, it displays the lowest ΔH of 73.11 kJ mol−1 and ΔS of − 0.0452844 J mol−1 K−1, along with the highest ΔG of 179.77 kJ mol−1. The accuracy of these findings is confirmed through verification with the Gram–Charlier peak function, which yields a negligible margin of error. In conclusion, this study provides crucial insights for decision-makers by assessing combustion and thermodynamic parameters of oil palm biomass and coal blends. The L80M20F, identified as the optimum blended fuel, showcases its potential to enhance combustion efficiency and contribute to the energy transition toward net-zero emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rokhmawati A. Comparison of power plant portfolios under the no energy mix target and national energy mix target using the mean–variance model. Energy Rep. 2021;7:4850–61. https://doi.org/10.1016/j.egyr.2021.07.137.

    Article  Google Scholar 

  2. Sekretariat-Kabinet-RI (2014) Peraturan Pemerintah (PP) tentang Kebijakan Energi Nasional. 79

  3. Darmawan A, Asyhari T, Dunggio I, et al. Energy harvesting from tropical biomasses in Wallacea region: scenarios, technologies, and perspectives. Biomass Convers Biorefinery. 2023;1:1–19. https://doi.org/10.1007/S13399-023-04223-8/FIGURES/1.

    Article  Google Scholar 

  4. Mahidin S, Erdiwansyah, et al. Analysis of power from palm oil solid waste for biomass power plants: a case study in Aceh Province. Chemosphere. 2020;253:126714. https://doi.org/10.1016/j.chemosphere.2020.126714.

    Article  CAS  PubMed  Google Scholar 

  5. Hariana, Karuana F, Prabowo, et al. Effects of different coals for co-combustion with palm oil waste on slagging and fouling aspects. Combust Sci Technol. 2022. https://doi.org/10.1080/00102202.2022.2152684.

    Article  Google Scholar 

  6. Hariana P, Hilmawan E, et al. A comprehensive evaluation of cofiring biomass with coal and slagging-fouling tendency in pulverized coal-fired boilers. Ain Shams Eng J. 2022. https://doi.org/10.1016/j.asej.2022.102001.

    Article  Google Scholar 

  7. Ninduangdee P, Kuprianov VI. Fluidized bed co-combustion of rice husk pellets and moisturized rice husk: the effects of co-combustion methods on gaseous emissions. Biomass Bioenerg. 2018;112:73–84. https://doi.org/10.1016/j.biombioe.2018.02.016.

    Article  CAS  Google Scholar 

  8. Xinjie L, Shihong Z, Xincheng W, et al. Co-combustion of wheat straw and camphor wood with coal slime: thermal behaviour, kinetics, and gaseous pollutant emission characteristics. Energy. 2021;234:121292. https://doi.org/10.1016/j.energy.2021.121292.

    Article  CAS  Google Scholar 

  9. Loh SK. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers Manag. 2017;141:285–98. https://doi.org/10.1016/j.enconman.2016.08.081.

    Article  CAS  Google Scholar 

  10. Tan C, Saritpongteeraka K, Kungsanant S, et al. Low temperature hydrothermal treatment of palm fiber fuel for simultaneous potassium removal, enhanced oil recovery and biogas production. Fuel. 2018;234:1055–63. https://doi.org/10.1016/j.fuel.2018.07.137.

    Article  CAS  Google Scholar 

  11. Shrivastava P, Khongphakdi P, Palamanit A, et al. Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes. Biomass Convers Biorefinery. 2021;11:1987–2001. https://doi.org/10.1007/s13399-019-00596-x.

    Article  CAS  Google Scholar 

  12. Madhiyanon T, Sathitruangsak P, Sungworagarn S, et al. A pilot-scale investigation of ash and deposition formation during oil-palm empty-fruit-bunch (EFB) combustion. Fuel Process Technol. 2012;96:250–64. https://doi.org/10.1016/J.FUPROC.2011.12.020.

    Article  CAS  Google Scholar 

  13. Han J, Yu D, Wu J, et al. Fine ash formation and slagging deposition during combustion of silicon-rich biomasses and their blends with a low-rank coal. Energy Fuels. 2019;33:5875–82. https://doi.org/10.1021/acs.energyfuels.8b04193.

    Article  CAS  Google Scholar 

  14. Soh M, Chew JJ, Liu S, Sunarso J. Comprehensive kinetic study on the pyrolysis and combustion behaviours of five oil palm biomass by thermogravimetric–mass spectrometry (TG–MS) analyses. Bioenergy Res. 2019;12:370–87. https://doi.org/10.1007/s12155-019-09974-9.

    Article  CAS  Google Scholar 

  15. Tariq R, Mohd Zaifullizan Y, Salema AA, et al. Co-pyrolysis and co-combustion of orange peel and biomass blends: kinetics, thermodynamic, and ANN application. Renew Energy. 2022;198:399–414. https://doi.org/10.1016/j.renene.2022.08.049.

    Article  CAS  Google Scholar 

  16. Elmay Y, Jeguirim M, Trouvé G, Said R. Kinetic analysis of thermal decomposition of date palm residues using Coats–Redfern method. Energy Sources, Part A Recover Util Environ Eff. 2016;38:1117–24. https://doi.org/10.1080/15567036.2013.821547.

    Article  Google Scholar 

  17. Rueda-Ordóñez YJ, Arias-Hernández CJ, Manrique-Pinto JF, et al. Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. Bioresour Technol. 2019;292:121923. https://doi.org/10.1016/j.biortech.2019.121923.

    Article  CAS  PubMed  Google Scholar 

  18. Perera KUC, Narayana M. Kissinger method: the sequential approach and DAEM for kinetic study of rubber and gliricidia wood. J Natl Sci Found Sri Lanka. 2018;46:187. https://doi.org/10.4038/jnsfsr.v46i2.8419.

    Article  CAS  Google Scholar 

  19. Xu X, Pan R, Chen R. Combustion characteristics, kinetics, and thermodynamics of pine wood through thermogravimetric analysis. Appl Biochem Biotechnol. 2021;193:1427–46. https://doi.org/10.1007/s12010-020-03480-x.

    Article  CAS  PubMed  Google Scholar 

  20. Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U. A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrolysis. 2003;68–69:231–49. https://doi.org/10.1016/S0165-2370(03)00065-2.

    Article  CAS  Google Scholar 

  21. Alsulami RA, El-Sayed SA, Eltaher MA, et al. Thermal decomposition characterization and kinetic parameters estimation for date palm wastes and their blends using TGA. Fuel. 2023;334:126600. https://doi.org/10.1016/j.fuel.2022.126600.

    Article  CAS  Google Scholar 

  22. Idris SS, Rahman NA, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol. 2012;123:581–91. https://doi.org/10.1016/j.biortech.2012.07.065.

    Article  CAS  PubMed  Google Scholar 

  23. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  24. Luo R, Zhou Q. Combustion kinetic behavior of different ash contents coals co-firing with biomass and the interaction analysis. J Therm Anal Calorim. 2017;128:567–80. https://doi.org/10.1007/s10973-016-5867-y.

    Article  CAS  Google Scholar 

  25. Onenc S, Retschitzegger S, Evic N, et al. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal. Waste Manag. 2018;71:192–9. https://doi.org/10.1016/j.wasman.2017.10.041.

    Article  CAS  PubMed  Google Scholar 

  26. Sbirrazzuoli N. Advanced isoconversional kinetic analysis for the elucidation of complex reaction mechanisms: a new method for the identification of rate-limiting steps. Molecules. 2019;24:1683. https://doi.org/10.3390/molecules24091683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  28. Raza M, Abu-Jdayil B, Al-Marzouqi AH, Inayat A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew Energy. 2022;183:67–77. https://doi.org/10.1016/j.renene.2021.10.065.

    Article  CAS  Google Scholar 

  29. Ma BG, Li XG, Xu L, et al. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim Acta. 2006;445:19–22. https://doi.org/10.1016/j.tca.2006.03.021.

    Article  CAS  Google Scholar 

  30. Li XG, Ma BG, Xu L, et al. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441:79–83. https://doi.org/10.1016/j.tca.2005.11.044.

    Article  CAS  Google Scholar 

  31. Luo SY, Xiao B, Hu ZQ, et al. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy. 2009;34:1880–4. https://doi.org/10.1016/j.energy.2009.07.036.

    Article  CAS  Google Scholar 

  32. Yang Q, Wang T, Wang J, et al. Combustion, emission and slagging characteristics for typical agricultural crop straw usage in heating plants. Thermochim Acta. 2021;702:178979. https://doi.org/10.1016/j.tca.2021.178979.

    Article  CAS  Google Scholar 

  33. Jayaraman K, Kök MV, Gökalp I. Combustion mechanism and model free kinetics of different origin coal samples: thermal analysis approach. Energy. 2020. https://doi.org/10.1016/j.energy.2020.117905.

    Article  Google Scholar 

  34. Kok MV, Yildirim B. The combustion performance and kinetics of Saray-Thrace region coal: the effects of particle size and heating rate. J Pet Sci Eng. 2022;208:108987. https://doi.org/10.1016/j.petrol.2021.108987.

    Article  CAS  Google Scholar 

  35. Huang J, Liu J, Chen J, et al. Combustion behaviors of spent mushroom substrate using TG–MS and TG–FTIR: thermal conversion, kinetic, thermodynamic and emission analyses. Bioresour Technol. 2018;266:389–97. https://doi.org/10.1016/j.biortech.2018.06.106.

    Article  CAS  PubMed  Google Scholar 

  36. Hurt R. Residual carbon from pulverized coal fired boilers: 1. Size distribution and combustion reactivity. Fuel. 1995;74:471–80. https://doi.org/10.1016/0016-2361(95)98348-I.

    Article  CAS  Google Scholar 

  37. Niu SL, Lu CM, Han KH, Zhao JL. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98:267–74. https://doi.org/10.1007/s10973-009-0133-1.

    Article  CAS  Google Scholar 

  38. Kim YS, Kim YS, Kim SH. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol. 2010;44:5313–7. https://doi.org/10.1021/es101163e.

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Liu J, Kuo J, et al. Kinetics, thermodynamics, gas evolution and empirical optimization of (co-)combustion performances of spent mushroom substrate and textile dyeing sludge. Bioresour Technol. 2019;280:313–24. https://doi.org/10.1016/j.biortech.2019.02.011.

    Article  CAS  PubMed  Google Scholar 

  40. Zou H, Evrendilek F, Liu J, Buyukada M. Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: Thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresour Technol. 2019;288:121481. https://doi.org/10.1016/j.biortech.2019.121481.

    Article  CAS  PubMed  Google Scholar 

  41. Sun S, Yuan Y, Chen R, et al. Kinetic, thermodynamic and chemical reaction analyses of typical surgical face mask waste pyrolysis. Therm Sci Eng Prog. 2021;26:101135. https://doi.org/10.1016/j.tsep.2021.101135.

    Article  CAS  Google Scholar 

  42. Bruns MC, Leventon IT. Automated fitting of thermogravimetric analysis data. Fire Mater. 2021;45:406–14. https://doi.org/10.1002/fam.2849.

    Article  CAS  Google Scholar 

  43. Hariana H, Prayoga MZE, Darmawan A, et al. Combining experimental and analytical methods to evaluate coal co-firing with sorghum waste. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12153-w.

    Article  Google Scholar 

  44. Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends. Prog Energy Combust Sci. 2001;27:171–214. https://doi.org/10.1016/S0360-1285(00)00020-4.

    Article  CAS  Google Scholar 

  45. Vamvuka D, Panagopoulos G, Sfakiotakis S. Investigating potential co-firing of corn cobs with lignite for energy production. Thermal analysis and behavior of ashes. Int J Coal Prep Util. 2022;42:2493–504. https://doi.org/10.1080/19392699.2020.1856099.

    Article  CAS  Google Scholar 

  46. Biswas B, Pandey N, Bisht Y, et al. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol. 2017;237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046.

    Article  CAS  PubMed  Google Scholar 

  47. Hariana PHP, Prabowo, et al. Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler. Energy. 2023;269:126784. https://doi.org/10.1016/j.energy.2023.126784.

    Article  CAS  Google Scholar 

  48. Rzychoń M, Żogała A, Róg L. An interpretable extreme gradient boosting model to predict ash fusion temperatures. Minerals. 2020;10:487. https://doi.org/10.3390/min10060487.

    Article  CAS  Google Scholar 

  49. Niu Y, Tan H, Hui S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci. 2016;52:1–61. https://doi.org/10.1016/j.pecs.2015.09.003.

    Article  Google Scholar 

  50. Sobek S, Tran Q-K, Junga R, Werle S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel. 2022;314:122725. https://doi.org/10.1016/j.fuel.2021.122725.

    Article  CAS  Google Scholar 

  51. Xiao Z, Wang S, Luo M, Cai J. Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition. Fuel. 2022;310:122399. https://doi.org/10.1016/j.fuel.2021.122399.

    Article  CAS  Google Scholar 

  52. Xue D, Hu X, Cheng W, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications. Fuel. 2020;264:116903. https://doi.org/10.1016/j.fuel.2019.116903.

    Article  CAS  Google Scholar 

  53. Koga N, Vyazovkin S, Burnham AK, et al. ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim Acta. 2023;719: 179384. https://doi.org/10.1016/j.tca.2022.179384.

    Article  CAS  Google Scholar 

  54. Sheng C, Yao C. Review on self-heating of biomass materials: understanding and description. Energy Fuels. 2022;36:731–61. https://doi.org/10.1021/acs.energyfuels.1c03369.

    Article  CAS  Google Scholar 

  55. Mortari DA, Torquato LDM, Crespi MS, Crnkovic PM. Co-firing of blends of sugarcane bagasse and coal. J Therm Anal Calorim. 2018;132:1333–45. https://doi.org/10.1007/s10973-018-6996-2.

    Article  CAS  Google Scholar 

  56. Sezer S, Kartal F, Özveren U. The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index. Therm Sci Eng Prog. 2021;23:100889. https://doi.org/10.1016/j.tsep.2021.100889.

    Article  CAS  Google Scholar 

  57. Alves JLF, da Silva JCG, Mumbach GD, et al. Kinetic triplet and thermodynamic parameters of the pyrolysis reaction of invasive grass Eleusine indica biomass: a new low-cost feedstock for bioenergy production. Biomass Convers Biorefinery. 2022. https://doi.org/10.1007/s13399-022-03347-7.

    Article  Google Scholar 

  58. Zhang H, Shu Y, Yue S, et al. Preheating pyrolysis-char combustion characteristics and kinetic analysis of ultra-low calorific value coal gangue: Thermogravimetric study. Appl Therm Eng. 2023;229:120583. https://doi.org/10.1016/j.applthermaleng.2023.120583.

    Article  CAS  Google Scholar 

  59. Dwivedi KK, Prabhansu KMK, Chatterjee PK. Thermal degradation, characterization and kinetic modeling of different particle size coal through TGA. Therm Sci Eng Prog. 2020;18:100523. https://doi.org/10.1016/j.tsep.2020.100523.

    Article  Google Scholar 

  60. Liu Y, Cao X, Duan X, et al. Thermal analysis on combustion characteristics of predried dyeing sludge. Appl Therm Eng. 2018;140:158–65. https://doi.org/10.1016/j.applthermaleng.2018.05.055.

    Article  CAS  Google Scholar 

  61. Castells B, Amez I, Medic L, García-Torrent J. Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Process Technol. 2021;218:106843. https://doi.org/10.1016/j.fuproc.2021.106843.

    Article  CAS  Google Scholar 

  62. Petrovič A, Stergar J, Škodič L, et al. Thermo-kinetic analysis of pyrolysis of thermally pre-treated sewage sludge from the food industry. Therm Sci Eng Prog. 2023. https://doi.org/10.1016/j.tsep.2023.101863.

    Article  Google Scholar 

  63. Zhang W, Cheng M, Chen Y, et al. Experimental study on condensation flow patterns and heat transfer characteristics of non-azeotropic and immiscible binary mixed vapors. Int J Therm Sci. 2023;184:107974. https://doi.org/10.1016/j.ijthermalsci.2022.107974.

    Article  CAS  Google Scholar 

  64. Gibbs J. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Connect Acad Arts Sci. 1873;2:382–404.

    Google Scholar 

  65. De Meulenaere R, Coppitters D, Maertens T, et al. Quantifying the impact of furnace heat transfer parameter uncertainties on the thermodynamic simulations of a biomass retrofit. Therm Sci Eng Prog. 2023;37:101592. https://doi.org/10.1016/j.tsep.2022.101592.

    Article  Google Scholar 

  66. Rahman MN, Yusup S, Fui BCL, et al. Oil palm wastes co-firing in an opposed firing 500 MW utility boiler: a numerical analysis. CFD Lett. 2023;15:139–52. https://doi.org/10.37934/cfdl.15.3.139152.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Organization for Energy and Manufacture—National Research and Innovation Agency through the grant contract numbers 13/III.3/HK/2022, and also the Center for Technology Service. The authors acknowledge the facilities, scientific and technical support from the National Research and Innovation Agency through E-Layanan Sains (ELSA).

Author information

Authors and Affiliations

Authors

Contributions

MZEP contributed to writing—original draft preparation, data curation, methodology, and analysis. HPP contributed to conceptualization, writing, methodology, and supervision. NA contributed to data curation, analysis, and writing—editing. IML contributed to data curation, writing, and editing. Ifanda contributed to writing and editing. AP contributed to data curation, analysis, and editing. AD contributed to data curation, writing, and editing. JH contributed to data curation, writing, and editing. SSW contributed to data curation, writing, and editing. MA contributed to supervision, conceptualization, writing, and revision. PP contributed to supervision and conceptualization. HH contributed to supervision, conceptualization, writing, and editing.

Corresponding authors

Correspondence to Prabowo Prabowo or Hariana Hariana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prayoga, M.Z.E., Putra, H.P., Adelia, N. et al. Co-combustion performance of oil palm biomass with coal: thermodynamics and kinetics analyses. J Therm Anal Calorim 149, 2873–2891 (2024). https://doi.org/10.1007/s10973-023-12865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12865-z

Keywords

Navigation