Skip to main content

Advertisement

Log in

Biomass pyrolysis: past, present, and future

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Biomass pyrolysis is a promising renewable sustainable source of fuels and petrochemical substitutes. It may help in compensating the progressive consumption of fossil-fuel reserves. The present article outlines biomass pyrolysis. Various types of biomass used for pyrolysis are encompassed, e.g., wood, agricultural residues, sewage. Categories of pyrolysis are outlined, e.g., flash, fast, and slow. Emphasis is laid on current and future trends in biomass pyrolysis, e.g., microwave pyrolysis, solar pyrolysis, plasma pyrolysis, hydrogen production via biomass pyrolysis, co-pyrolysis of biomass with synthetic polymers and sewage, selective preparation of high-valued chemicals, pyrolysis of exotic biomass (coffee grounds and cotton shells), comparison between algal and terrestrial biomass pyrolysis. Specific future prospects are investigated, e.g., preparation of supercapacitor biochar materials by one-pot one-step pyrolysis of biomass with other ingredients, and fabricating metallic catalysts embedded on biochar for removal of environmental contaminants. The authors predict that combining solar pyrolysis with hydrogen production would be the eco-friendliest and most energetically feasible process in the future. Since hydrogen is an ideal clean fuel, this process may share in limiting climate changes due to CO2 emissions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bashir, M., Yu, X., Hassan, M., & Makkawi, Y. (2017). Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustainable Chemistry & Engineering,5, 3795–3807.

    CAS  Google Scholar 

  • Baumann, H., Bittner, D., Beiers, H. G., et al. (1988). Pyrolysis of coal in hydrogen and helium plasmas. Fuel,67, 1120–1123.

    CAS  Google Scholar 

  • Borges, F. C., Du, Z., Xie, Q., et al. (2014a). Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology,156, 267–274.

    CAS  Google Scholar 

  • Borges, F. C., Xie, Q., Min, M., et al. (2014b). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology,166, 518–526.

    CAS  Google Scholar 

  • Burger, P. (2013). Ancient maritime pitch and tar a multi-disciplinary study of sources, technology and preservation. British Museum. https://www.britishmuseum.org/research/research_projects/all_current_projects/ancient_maritime_pitch_and_tar.aspx.

  • Chen, X., Yang, H., Chen, Y., et al. (2017). Catalytic fast pyrolysis of biomass to produce furfural using heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis,127, 292–298.

    CAS  Google Scholar 

  • Chisolm, H. (1910). Encyclopedia britannica (Vol. 5). New York: Encycl. Br.

    Google Scholar 

  • Cho, D. W., Kwon, G., Ok, Y. S., et al. (2017). Reduction of bromate by cobalt-impregnated biochar fabricated via pyrolysis of lignin using CO2 as a reaction medium. ACS Applied Materials & Interfaces,9, 13142–13150.

    CAS  Google Scholar 

  • Choi, Y. S., Choi, S. K., Kim, S. J., et al. (2017). Fast pyrolysis of coffee ground in a tilted-slide reactor and characteristics of biocrude oil. Environmental Progress & Sustainable Energy,36, 655–661.

    CAS  Google Scholar 

  • Daintith, J. (2013). “tar,” 6th edn. A dictionary of chemistry. Oxford: Oxford University Press.

  • Del Río, J. C., Rencoret, J., Prinsen, P., et al. (2012). Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agriculture and Food Chemistry,60, 5922–5935.

    Google Scholar 

  • Dorado, C., Mullen, C. A., & Boateng, A. A. (2014). H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustainable Chemistry & Engineering,2, 301–311.

    CAS  Google Scholar 

  • Duman, G., & Yanik, J. (2017). Two-step steam pyrolysis of biomass for hydrogen production. International Journal of Hydrogen Energy,42, 17000–17008.

    CAS  Google Scholar 

  • El-Shinnawy, N. A., Heikal, S., & Fahmy, Y. (1983). Saccharification of cotton bolls by concentrated sulphuric acid. Research and Industry,28(2), 123–126.

    CAS  Google Scholar 

  • Fahmy, Y. (1982). Pyrolysis of agricultural residues. I. Prospects of lignocellulose pyrolysis for producing chemicals and energy sources. Cellulose Chemistry and Technology,16, 347–355.

    CAS  Google Scholar 

  • Fahmy, Y., Fadl, M. H., & El-Shinnawy, N. A. (1975). Saccharification of cotton stalks. Research and Industry,20(1), 7–10.

    CAS  Google Scholar 

  • Fahmy, Y., Fahmy, T. Y. A., Mobarak, F., et al. (2017). Agricultural residues (wastes) for manufacture of paper, board, and miscellaneous products: Background overview and future prospects. International Journal of ChemTech Research,10, 424–448.

    Google Scholar 

  • Fahmy, Y., Mobarak, F., & Schweers, W. (1982). Pyrolysis of agricultural residues. II. Yield and chemical composition of tars and oils produced from cotton stalks, and assessment of lignin structure. Cellulose Chemistry and Technology,16, 453–459.

    CAS  Google Scholar 

  • Fechler, N., Wohlgemuth, S.-A., Jäker, P., & Antonietti, M. (2013). Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions. Journal of Materials Chemistry A,1, 9418.

    CAS  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary productivity of the biosphere: An integration of terrestrial and oceanic components. Science,281(80), 237–240.

    CAS  Google Scholar 

  • Genovese, M., Jiang, J., Lian, K., & Holm, N. (2015). High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. Journal of Materials Chemistry A,3, 2903–2913.

    CAS  Google Scholar 

  • Gitzhofer, F. (2015). A review on plasma technologies applied to thermo-chemical biomass conversion. In: Biorefinery I: Chemicals and materials from thermo-chemical biomass conversion and related processes. Engineering Conferences International Symposium Series. September 27th, October 2nd 2015, Chania, Greece. http://dc.engconfintl.org/biorefinery_I/11.

  • Goldfarb, J. L., Dou, G., Salari, M., & Grinstaff, M. W. (2017). Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems. ACS Sustainable Chemistry & Engineering,5, 3046–3054.

    CAS  Google Scholar 

  • He, S., Hu, C., Hou, H., & Chen, W. (2014). Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. Journal of Power Sources,246, 754–761.

    CAS  Google Scholar 

  • Housecroft, C. E., & Sharpe, A. G. (2005). Inorganic chemistry (2nd ed., p. 888). Upper Saddle River, NJ: Pearson Education Limited.

    Google Scholar 

  • Huang, X., Cheng, D., Chen, F., & Zhan, X. (2016). Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: A density functional theory study. Renew Energy,96, 490–497.

    CAS  Google Scholar 

  • ISO 5660-1. (2002). Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate (cone calorimeter method) (p. 39). Geneva: International Organization for Standardization.

    Google Scholar 

  • Jensen, P. A., Frandsen, F. J., Dam-Johansen, K., & Sander, B. (2000). Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis. Energy & Fuels,14, 1280–1285.

    CAS  Google Scholar 

  • Jiang, J., Zhang, L., Wang, X., et al. (2013). Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta,113, 481–489.

    CAS  Google Scholar 

  • Jimenez, G. D., Monti, T., Titman, J. J., et al. (2017). New insights into microwave pyrolysis of biomass: Preparation of carbon-based products from pecan nutshells and their application in wastewater treatment. Journal of Analytical and Applied Pyrolysis,124, 113–121.

    CAS  Google Scholar 

  • Joardder, M. U., Halder, P. K., Rahim, A., & Paul, N. (2014). Solar assisted fast pyrolysis: a novel approach of renewable energy production. Journal of Engineering, 2014, Article ID 252848.

  • Jonsson, E. (2016). Slow pyrolysis in Brista: An evaluation of heat and biochar production in Sweden (Dissertation). KTH Royal Institute of Technology, Stockholm.

  • Kan, T., Strezov, V., & Evans, T. (2013). Catalytic pyrolysis of coffee grounds using NiCu-impregnated catalysts. Energy & Fuels,28, 228–235.

    Google Scholar 

  • Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews,1, 1126–1140.

    Google Scholar 

  • Kan, T., Xiong, J., Li, X., Ye, T., Yuan, L., Torimoto, Y., et al. (2010). High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming. International Journal of Hydrogen Energy,35, 518–532.

    CAS  Google Scholar 

  • Kiel, J. H., Van Paasen, S. V., Neeft, J. P., Devi, L., Ptasinski, K. J., Janssen, F. J., et al. (2004) Primary measures to reduce tar formation in fluidised-bed biomass gasifiers- final report SDE-project P1999-012”. Report ECN-C–04-014, ECN, Petten.

  • Kim, B. S., Kim, Y. M., Lee, H. W., et al. (2016). Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY. ACS Sustainable Chemistry & Engineering,4, 1354–1363.

    CAS  Google Scholar 

  • König, J. (2004) Notional versus one-dimensional charring rates of timber. In World conference on timber engineering. Lahti, Finland (pp. 483–486).

  • Lawrinenko, M., Laird, D. A., & Van Leeuwen, J. H. (2017). Sustainable pyrolytic production of zerovalent iron. ACS Sustainable Chemistry & Engineering,5, 767–773.

    CAS  Google Scholar 

  • Li, X., Li, J., Zhou, G., et al. (2014). Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Applied Catalysis, A: General,481, 173–182.

    CAS  Google Scholar 

  • Li, R., Zeng, K., Soria, J., et al. (2016). Product distribution from solar pyrolysis of agricultural and forestry biomass residues. Renew Energy,89, 27–35.

    CAS  Google Scholar 

  • Li, X., Zhang, H., Li, J., et al. (2013). Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Applied Catalysis, A: General,455, 114–121.

    CAS  Google Scholar 

  • Liu, W. J., Tian, K., He, Y. R., et al. (2014). High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environmental Science and Technology,48, 13951–13959.

    CAS  Google Scholar 

  • Liu, S., Xie, Q., Zhang, B., et al. (2016). Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresource Technology,204, 164–170.

    CAS  Google Scholar 

  • Lu, Q., Ye, X. N., Zhang, Z. B., et al. (2016). Catalytic fast pyrolysis of bagasse using activated carbon catalyst to selectively produce 4-ethyl phenol. Energy & Fuels,30, 10618–10626.

    CAS  Google Scholar 

  • Madhu, P., Kanagasabapathy, H., & Neethi Manickam, I. (2016). Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor. Journal of Material Cycles and Waste Management,18, 146–155.

    CAS  Google Scholar 

  • Maliutina, K., Tahmasebi, A., Yu, J., & Saltykov, S. N. (2017). Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Conversion and Management,151, 426–438.

    CAS  Google Scholar 

  • Mobarak, F. (1983). Rapid continuous pyrolysis of cotton stalks for charcoal production. Holzforschung,37(5), 251–254.

    CAS  Google Scholar 

  • Mobarak, F., Fahmy, Y., & Schweers, W. (1982). Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process. Wood Science and Technology,16, 59–66.

    CAS  Google Scholar 

  • Morales, S., Miranda, R., Bustos, D., et al. (2014). Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal of Analytical and Applied Pyrolysis,109, 65–78.

    CAS  Google Scholar 

  • Morozov, A. I. (2013). Introduction to plasma dynamics. Boca Raton: CRC PRESS.

    Google Scholar 

  • Nzihou, A., Flamant, G., & Stanmore, B. (2012). Synthetic fuels from biomass using concentrated solar energy—A review. Energy,42, 121–131.

    CAS  Google Scholar 

  • Östman, B., & Rydholm, D. (2002). National fire regulations in relation to the use of wood in European and some other countries. Trätek Publication 0212044 57 pp.

  • Özsin, G., & Pütün, A. E. (2017). Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis. Energy Conversion and Management,149, 675–685.

    Google Scholar 

  • Piel, A. (2010). Plasma physics: An introduction to laboratory, space, and fusion plasmas. Berlin: Springer.

    Google Scholar 

  • Pozzobon, V., Salvador, S., Bézian, J. J., et al. (2014). Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling. Fuel Processing Technology,128, 319–330.

    CAS  Google Scholar 

  • REN21 (2014) Renewables 2014 Global status report. energieclimat.

  • Ringer, M., Putsche, V., & Scahill, J. (2006). Large-scale pyrolysis oil production: A technology assessment and economic analysis. Nrel/Tp-510-37779 1–93.

  • Tang, L., & Huang, H. (2005). Plasma pyrolysis of biomass for production of syngas and carbon adsorbent. Energy & Fuels,19, 1174–1178.

    CAS  Google Scholar 

  • Tanksale, A., Beltramini, J. N., & Lu, G. M. (2010). A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews,14, 166–182.

    CAS  Google Scholar 

  • Tiilikkala, K., Fagernäs, L., & Tiilikkala, J. (2010). History and Use of Wood Pyrolysis Liquids as Biocide and Plant Protection Product. Open Agric J,4, 111–118.

    Google Scholar 

  • U.S. Department of Energy. (2013). Today’s hydrogen production industry. Washington DC: Office of Fossil energy. http://www.fossil.energy.gov/programs/fuels/hydrogen/currenttechnology.shtml.

  • Varhegyi, G., Jakab, E., & Antal, M. J., Jr. (1994). Is the Broido–Shafizadeh model for cellulose pyrolysis true? Energy & Fuels,8(6), 1345–1352.

    CAS  Google Scholar 

  • Waheed, Q. M. K., & Williams, P. T. (2013). Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: Rice husk, sugar cane bagasse, and wheat straw. Energy & Fuels,27, 6695–6704.

    CAS  Google Scholar 

  • Walker, P. D. (2000). Essentials of ecology. Oxford: Blackwell Science.

    Google Scholar 

  • Wang, L., Mu, G., Tian, C., et al. (2013). Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Chemsuschem,6, 880–889.

    CAS  Google Scholar 

  • Weldekidan, H., Strezov, V., Kan, T., & Town, G. (2017). Waste to energy conversion of chicken litter through a solar-driven pyrolysis process. Energy & Fuels,32, 4341–4349.

    Google Scholar 

  • Xie, Q., Addy, M., Liu, S., et al. (2015). Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel,160, 577–582.

    CAS  Google Scholar 

  • Xue, Y., Kelkar, A., & Bai, X. (2015). Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel,166, 227–236.

    Google Scholar 

  • Yin, H., Lu, B., Xu, Y., et al. (2014). Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environmental Science and Technology,48, 8101–8108.

    CAS  Google Scholar 

  • Zhang, Y., Chen, P., Liu, S., Fan, L., Zhou, N., Min, M., Cheng, Y., Peng, P., Anderson, E., Wang, Y., Wan, Y., Liu. Y., Li, B., & Ruan, R. (2017b). Microwave-assisted pyrolysis of biomass for bio-oil production. In Pyrolysis. London: IntechOpen. https://doi.org/10.5772/67442.

    Google Scholar 

  • Zhang, S., Tian, K., Cheng, B. H., & Jiang, H. (2017a). Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustainable Chemistry & Engineering,5, 6682–6691.

    CAS  Google Scholar 

  • Zhang, W., Yuan, C., Xu, J., & Yang, X. (2015a). Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresource Technology,183, 255–258.

    CAS  Google Scholar 

  • Zhang, B., Zhong, Z., Ding, K., & Song, Z. (2015b). Production of aromatic hydrocarbons from catalytic co-pyrolysis of biomass and high density polyethylene: Analytical Py-GC/MS study. Fuel,139, 622–628.

    CAS  Google Scholar 

  • Zhao, Z., Huang, H., Wu, C., et al. (2001). Biomass pyrolysis in an argon/hydrogen plasma reactor. Engineering in Life Sciences,1, 197–199.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Y. A. Fahmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, T.Y.A., Fahmy, Y., Mobarak, F. et al. Biomass pyrolysis: past, present, and future. Environ Dev Sustain 22, 17–32 (2020). https://doi.org/10.1007/s10668-018-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0200-5

Keywords

Navigation