Skip to main content
Log in

Highly efficient intumescent flame retardant of dopamine-modified ammonium polyphosphate for the thermoplastic polyurethane elastomer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the widely application of thermoplastic polyurethane elastomer (TPU), the fire safety of the TPU composites has attracted more and more attention. In this work, a highly efficient and green flame retardant (DA-APP) was synthesized via the ion exchange reaction between biologically relevant molecule dopamine (DA) and ammonium polyphosphate (APP). When the incorporation amount of DA-APP was 5 wt%, it was found that TPU/DA-APP5 passed the V-0 rating and the LOI reached to 25.9%. Meanwhile, the peak heat release rate (PHRR) of TPU composite decreased by 732.5 kW m−2 and total heat release decreased by 19.7 MJ m−2 and total smoke release decreased by 33.6 m2 compared to that of the neat TPU. Moreover, the flame-retarding mechanism of TPU/DA-APP5 was analyzed by TG-FTIR and Raman characterization. The results showed that DA-APP produced amino compounds and phosphoric acid at low temperature, promoted TPU to produce water and carbon dioxide, and diluted oxygen concentration during combustion. In addition, the dense carbon layer formed on the surface of TPU played an important role to isolate the diffusion of heat and oxygen .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen XL, Feng XL, Jiao CM. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J Therm Anal Calorim. 2017;129(2):851–7. https://doi.org/10.1007/s10973-017-6189-4.

    Article  CAS  Google Scholar 

  2. Tabuani D, Bellucci F, Terenzi A, et al. Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stabil. 2012;97(12):2594–601. https://doi.org/10.1016/j.polymdegradstab.2012.07.011.

    Article  CAS  Google Scholar 

  3. Chen H, Deng C, Zhao Z-Y, et al. Novel alkynyl-containing phosphonate esteroligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Compos Part B-Eng. 2020;199:108315. https://doi.org/10.1016/j.compositesb.2020.108315.

    Article  CAS  Google Scholar 

  4. Chen X, Ma C, Jiao C. Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron–graphene. Polym Degrad Stabil. 2016;129:275–85. https://doi.org/10.1016/j.polymdegradstab.2016.04.017.

    Article  CAS  Google Scholar 

  5. Zhou X, Qiu S, Mu X, et al. Polyphosphazenes-based flame retardants: a review. Compos Part B Eng. 2020;202:108397. https://doi.org/10.1016/j.compositesb.2020.108397.

    Article  CAS  Google Scholar 

  6. Chen L, Wang YZ. A review on flame retardant technology in China part I: development of flame retardants. Polym Adv Technol. 2010;21(1):1–26. https://doi.org/10.1002/pat.1550.

    Article  CAS  Google Scholar 

  7. Jeencham R, Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos Part B Eng. 2014;56:249–53. https://doi.org/10.1016/j.compositesb.2013.08.012.

    Article  CAS  Google Scholar 

  8. Wan L, Deng C, Chen H, et al. Flame-retarded thermoplastic polyurethane elastomer From organic materials to nanocomposites and new prospects. Chem Eng J. 2021;417:129314. https://doi.org/10.1016/j.cej.2021.129314.

    Article  CAS  Google Scholar 

  9. Cao X, Zhao W, Huang J, et al. Interface engineering of graphene oxide containing phosphorus/nitrogen towards fire safety enhancement for thermoplastic polyurethane. Compos Commun. 2021;27:100821. https://doi.org/10.1016/j.coco.2021.100821.

    Article  Google Scholar 

  10. Ji XY, Chen DY, Wang QW, et al. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol. 2018;163:49–55. https://doi.org/10.1016/j.compscitech.2018.05.007.

    Article  CAS  Google Scholar 

  11. Chen CK, Zhao XL, Shi CL, et al. Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J Mater Sci. 2018;53(8):6053–64. https://doi.org/10.1007/s10853-017-1970-0.

    Article  CAS  Google Scholar 

  12. van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88(10):1119–53. https://doi.org/10.1016/j.chemosphere.2012.03.067.

    Article  CAS  PubMed  Google Scholar 

  13. Chen XL, Jiang YF, Jiao CM. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117(2):857–66. https://doi.org/10.1007/s10973-014-3831-2.

    Article  CAS  Google Scholar 

  14. Liu LB, Xu Y, Li S, et al. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos Part B Eng. 2019;176:107218. https://doi.org/10.1016/j.compositesb.2019.107218.

    Article  CAS  Google Scholar 

  15. Liu XD, Gu XY, Sun J, et al. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohyd Polym. 2017;167:356–63. https://doi.org/10.1016/j.carbpol.2017.03.011.

    Article  CAS  Google Scholar 

  16. Qiu S, Ma C, Wang X, et al. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater. 2018;344:839–48. https://doi.org/10.1016/j.jhazmat.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Jiang Y, Liu J, et al. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120(3):1493–501. https://doi.org/10.1007/s10973-015-4424-4.

    Article  CAS  Google Scholar 

  18. Wang H, Qiao H, Guo J, et al. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos Part B Eng. 2020;182:107498. https://doi.org/10.1016/j.compositesb.2019.107498.

    Article  CAS  Google Scholar 

  19. Shao ZB, Deng C, Tan Y, et al. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl Mater Interface. 2014;6(10):7363–70. https://doi.org/10.1021/am500789q.

    Article  CAS  Google Scholar 

  20. Luo Y, Xie YH, Geng W, et al. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J Colloid Interface Sci. 2022;606:223–35. https://doi.org/10.1016/j.jcis.2021.08.025.

    Article  CAS  PubMed  Google Scholar 

  21. Kilinc K, Kanbur Y, Tayfun U. Mechanical, thermo-mechanical and water uptake performance of wood flour filled polyurethane elastomer eco-composites: influence of surface treatment of wood flour. Holzforschung. 2019;73(4):401–7. https://doi.org/10.1515/hf-2018-0116.

    Article  CAS  Google Scholar 

  22. Cai W, Wang BB, Liu LX, et al. An operable platform towards functionalization of chemically inert boron nitride nanosheets for flame retardancy and toxic gas suppression of thermoplastic polyurethane. Compos Part B Eng. 2019;178:104762. https://doi.org/10.1016/j.compositesb.2019.107462.

    Article  CAS  Google Scholar 

  23. Daniel YG, Howell BA. Flame retardant properties of isosorbide bis -phosphorus esters. Polym Degrad Stabil. 2017;140:25–31. https://doi.org/10.1016/j.polymdegradstab.2017.04.005.

    Article  CAS  Google Scholar 

  24. Alongi J, Di Blasio A, Milnes J, et al. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym Degrad Stab. 2015;113:110–8. https://doi.org/10.1016/j.polymdegradstab.2014.11.001.

    Article  CAS  Google Scholar 

  25. Cheng L, Wang JW, Qiu SL, et al. Supramolecular wrapped sandwich like SW–Si3N4 hybrid sheets as advanced filler toward reducing fire risks and enhancing thermal conductivity of thermoplastic polyurethanes. J Colloid Interface Sci. 2021;603:844–55. https://doi.org/10.1016/j.jcis.2021.06.153.

    Article  CAS  PubMed  Google Scholar 

  26. Liu XD, Sun J, Zhang S, et al. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polym Degrad Stab. 2019;160:168–76. https://doi.org/10.1016/j.polymdegradstab.2018.12.019.

    Article  CAS  Google Scholar 

  27. Cai W, Wang JL, Pan Y, et al. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J Hazard Mater. 2018;352:57–69. https://doi.org/10.1016/j.jhazmat.2018.03.021.

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Kim DW, Vasagar V, et al. Polydopamine–graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv Funct Mater. 2018;28(39):1803172. https://doi.org/10.1002/adfm.201803172.

    Article  CAS  Google Scholar 

  29. Liu C, Fang YF, Miao XM, et al. Facile fabrication of superhydrophobic polyurethane sponge towards oil water separation with exceptional flame-retardant performance. Sep Purif Technol. 2019;229:115801. https://doi.org/10.1016/j.seppur.2019.115801.

    Article  CAS  Google Scholar 

  30. Du X, Qiu J, Deng S, et al. Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/Polyurethane for efficient solar-to-thermal energy storage. Renew Energy. 2021;164:1–10. https://doi.org/10.1016/j.renene.2020.09.067.

    Article  CAS  Google Scholar 

  31. Jin Z, Xiao Y, Xu Z, et al. Dopamine-modified poly(styrene) nanospheres as new high-speed adsorbents for copper-ions having enhanced smoke-toxicity-suppression and flame-retardancy. J Colloid Interface Sci. 2021;582(Pt B):619–30. https://doi.org/10.1016/j.jcis.2020.08.077.

    Article  CAS  PubMed  Google Scholar 

  32. Xu B-R, Deng C, Li Y-M, et al. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Compos Part B Eng. 2019;172:636–48. https://doi.org/10.1016/j.compositesb.2019.05.099.

    Article  CAS  Google Scholar 

  33. Chen XL, Wang Y, Jiao CM. Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2018;132(1):251–61. https://doi.org/10.1007/s10973-017-6847-6.

    Article  CAS  Google Scholar 

  34. Yun GW, Lee JH, Kim SH. Flame retardant and mechanical properties of expandable graphite/polyurethane foam composites containing iron phosphonate dopamine-coated cellulose. Polym Compos. 2020;41(7):2816–28. https://doi.org/10.1002/pc.25578.

    Article  CAS  Google Scholar 

  35. Costache MC, Jiang DD, Wilkie CA. Thermal degradation of ethylene–vinyl acetate coplymer nanocomposites. Polymer. 2005;46(18):6947–58. https://doi.org/10.1016/j.polymer.2005.05.084.

    Article  CAS  Google Scholar 

  36. Chen X, Jiao C, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104(3):1037–43. https://doi.org/10.1007/s10973-011-1347-6.

    Article  CAS  Google Scholar 

  37. He L, Chen T, Zhang Y, et al. Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature. Compos Part B Eng. 2022;230:109553. https://doi.org/10.1016/j.compositesb.2021.109553.

    Article  CAS  Google Scholar 

  38. Qian X, Liu Q, Zhang L, et al. Synthesis of reactive DOPO-based flame retardant and its application in rigid polyisocyanurate–polyurethane foam. Polym Degrad Stab. 2022;197:109852. https://doi.org/10.1016/j.polymdegradstab.2022.109852.

    Article  CAS  Google Scholar 

  39. Chen XL, Wei ZB, Wang WD, et al. Properties of flame-retardant TPU based on para-aramid fiber modified with iron diethyl phosphinate. Polym Adv Technol. 2019;30(1):170–8. https://doi.org/10.1002/pat.4456.

    Article  CAS  Google Scholar 

  40. Bhoyate S, Ionescu M, Kahol PK, et al. Sustainable flame-retardant polyurethanes using renewable resources. Ind Crop Prod. 2018;123:480–8. https://doi.org/10.1016/j.indcrop.2018.07.025.

    Article  CAS  Google Scholar 

  41. Liang S, Wang F, Liang J, et al. Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers. Cellulose. 2020;27(10):6083–92. https://doi.org/10.1007/s10570-020-03203-9.

    Article  CAS  Google Scholar 

  42. Piao J, Ren J, Wang Y, et al. Green P-N coating by mechanochemistry: efficient flame retardant for cotton fabric. Cellulose. 2022;29(4):2711–29. https://doi.org/10.1007/s10570-022-04436-6.

    Article  CAS  Google Scholar 

  43. Zhan Y, Wu X, Wang S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym Degrad Stab. 2021;191:109684. https://doi.org/10.1016/j.polymdegradstab.2021.109684.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supported by the National Natural Science Foundation of China (Grant no. 22105030) and the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. sklpme2020-4-06) would be sincerely acknowledged.

Funding

The National Natural Science Foundation of China, 22105030, Yingming Li, the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University), sklpme2020-4-06, Yingming Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Ming Li or De-Yi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, WJ., Li, YM., Li, YR. et al. Highly efficient intumescent flame retardant of dopamine-modified ammonium polyphosphate for the thermoplastic polyurethane elastomer. J Therm Anal Calorim 148, 1841–1851 (2023). https://doi.org/10.1007/s10973-022-11852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11852-0

Keywords

Navigation