Skip to main content
Log in

Synthesis of APP@MOFs integrated hybrids flame retardants for reducing flammability of thermoplastic polyurethanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this manuscript, the UiO-66-NH2(Zr) (MOFs) was adopted to modify ammonium polyphosphate (APP), and the novel synergistic integrated flame retardant system (APP@MOFs) was formed. The flame retardants were incorporated to the thermoplastic polyurethanes (TPU) matrix, and the effects of APP@MOFs on reducing flammability of thermoplastic polyurethanes were compared and investigated. The results show that the flame retardant and smoke suppression performances of TPU/APP@MOFs composites are improved significantly. The pHRR, THR, SPR, TSP, YCO, and YCO2 of TPU/APP@MOFs composites decreased by 75.76%, 86.19%, 69.74%, 86.34%, 57.14%, and 76.37% in comparison with pure TPU. Furthermore, the char residues increased from 0.11 (pure TPU) to 32.3% (TPU/APP@MOFs composites). Generally, the APP@MOFs have great effect on improving the flame retardant and smoke suppression performances of TPU due to the catalytic carbonization and dilution effects of APP, the synergistic and catalysis effects of MOFs. Through the char structure analysis, the mechanism of the TPU/APP@MOFs composites during the combustion processes was also investigated and proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Yao JS, Liu XY, Sun HB, Liu ST, Jiang YJ, Yu B, et al. Thermoplastic polyurethane dielectric elastomers with high actuated strain and good mechanical strength by introducing ester group grafted polymethylvinylsiloxane. Ind Eng Chem Res. 2021;60(13):4883–91.

    Article  CAS  Google Scholar 

  2. Bourbigot S, Turf T, Bellayer S, Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab. 2009;94(8):1230–7.

    Article  CAS  Google Scholar 

  3. Song K, Son H, Park S, Lee J, Jang J, Lee M, et al. Fabrication of piezo-resistance composites containing thermoplastic polyurethane/hybrid filler using 3D printing. Sensors. 2021;21(20):6813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan L, Deng C, Chen H, Zhao ZY, Huang SC, Wei WC, et al. Flame-retarded thermoplastic polyurethane elastomer: from organic materials to nanocomposites and new prospects. Chem Eng J. 2021;417:129314.

    Article  CAS  Google Scholar 

  5. Liu C, Wu W, Shi Y, Yang F, Liu M, Chen Z, et al. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos Part B: Eng. 2020;203:108486.

    Article  CAS  Google Scholar 

  6. Zhang JY, Zhao HB, Zhang AN, Cheng JB, Li SL, Zhao W, et al. Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam. Compos Part A: Appl Sci Manuf. 2022;159:107021.

    Article  CAS  Google Scholar 

  7. Zhou YF, Chu FK, Qiu SL, Guo WW, Zhang SH, Xu ZM, et al. Construction of graphite oxide modified black phosphorus through covalent linkage: an efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin. J Hazard Mater. 2020;399:123015.

    Article  CAS  PubMed  Google Scholar 

  8. Bascucci C, Duretek I, Lehner S, Holzer C, Gaan S, Hufenus R, et al. Investigating thermomechanical recycling of poly(ethylene terephthalate) containing phosphorus flame retardants. Polym Degrad Stab. 2021;195:109783.

    Article  Google Scholar 

  9. Kukla P, Greiner L, Eibl S, Doring M, Schonberger F. Novel phosphorus-containing silazanes as flame retardants in epoxy resins. React Funct Polym. 2022;170:105120.

    Article  CAS  Google Scholar 

  10. Li N, Ming J, Yuan RC, Fan S, Liu L, Li FX, et al. Novel eco-friendly flame retardants based on nitrogen-silicone schiff base and application in cellulose. ACS Sustain Chem Eng. 2020;8(1):290–301.

    Article  Google Scholar 

  11. Qin YL, Li MC, Huang TK, Shen CH, Gao SJ. A study on the modification of polypropylene by a star-shaped intumescent flame retardant containing phosphorus and nitrogen. Polym Degrad Stab. 2022;195:109801.

    Article  CAS  Google Scholar 

  12. Shen RQ, Quan YF, Zhang ZR, Ma R, Wang QS. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene. Ind Eng Chem Res. 2022;61(21):7292–302.

    Article  CAS  Google Scholar 

  13. Sui YL, Dai XY, Li PH, Zhang CL. Superior radical scavenging and catalytic carbonization capacities of bioderived assembly modified ammonium polyphosphate as a mono-component intumescent flame retardant for epoxy resin. Eur Polym J. 2021;156:110601.

    Article  CAS  Google Scholar 

  14. Li YC, Xue BQ, Wang SH, Sun J, Li HF, Gu XY, et al. The photoaging and fire performance of polypropylene containing melamine phosphate. ACS Appl Polym Mater. 2020;2(11):4455–63.

    Article  CAS  Google Scholar 

  15. Wan M, Shi CL, Qian XD, Qin YP, Jing JY, Che HL, et al. Design of novel double-layer coated ammonium polyphosphate and its application in flame retardant thermoplastic polyurethanes. Chem Eng J. 2023;459:141448.

    Article  CAS  Google Scholar 

  16. Ren XY, Zou B, Zhou YF, Zhao ZX, Qiu SL, Song L. Construction of few-layered black phosphorus/graphite-like carbon nitride binary hybrid nanostructure for reducing the fire hazards of epoxy resin. J Colloid Interface Sci. 2020;586:692–707.

    Article  PubMed  Google Scholar 

  17. Zhou KQ, Gong KL, Gao FY, Yin L. Facile strategy to synthesize MXene@LDH nanohybrids for boosting the flame retardancy and smoke suppression properties of epoxy. Compos Part A: Appl Sci Manuf. 2022;157:106912.

    Article  CAS  Google Scholar 

  18. Shi YD, He L, Chen DY, Wang QW, Shen JB, Guo SY. Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly (butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos Part A: Appl Sci Manuf. 2020;137:106037.

    Article  CAS  Google Scholar 

  19. Qian XD, Song L, Yu B, Wang BB, Yuan BH, Shi YQ, et al. Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A. 2013;1(23):6822–30.

    Article  CAS  Google Scholar 

  20. Peng HH, Xiong WP, Yang ZH, Xu ZY, Cao J, Jia MY, et al. Advanced MOFs@aerogel composites: construction and application towards environmental remediation. J Hazard Mater. 2022;432:128684.

    Article  CAS  PubMed  Google Scholar 

  21. Meng CF, Hu PF, Chen HT, Cai YJ, Zhou H, Jiang ZH, et al. 2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. Nanoscale. 2021;13(16):7751–60.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang NF, Zhang J, Yan H, Guo XR, Sun Q, Guo R. A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene. J Hazard Mater. 2019;373:856–65.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao PF, Zeng W, Yang ZW, Yang YX, Li J, Shi JP, et al. Preparation of a novel functionalized magnesium-based curing agent as an intrinsic flame retardant for epoxy resin. Chemosphere. 2021;273:129658.

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Niu YJ, Xie ZP, Liang F, Guo FH, Wu JJ. Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem Eng J. 2022;451(2):138566.

    Google Scholar 

  25. Wang XF, Zhan J, Xing WY, Wang X, Song L, Qian XD, et al. Flame retardancy and thermal properties of novel UV-curable epoxy acrylate coatings modified by a silicon-bearing hyperbranched polyphosphonate acrylate. Ind Eng Chem Res. 2013;52(16):5548–55.

    Article  CAS  Google Scholar 

  26. Pan HF, Qian XD, Ma LY, Song L, Hu Y, Liew KM. Preparation of a novel biobased flame retardant containing phosphorus and nitrogen and its performance on the flame retardancy and thermal stability of poly(vinyl alcohol). Polym Degrad Stab. 2014;106:47–53.

    Article  CAS  Google Scholar 

  27. Chu FK, Qiu SL, Zhou YF, Zhou X, Cai W, Zhu YL, et al. Novel glycerol-based polymerized flame retardants with combined phosphorus structures for preparation of high performance unsaturated polyester resin composites. Compos Part B: Eng. 2022;233:109647.

    Article  CAS  Google Scholar 

  28. Gong KL, Yin L, Zhou KQ, Qian XD, Shi CL, Gui Z, et al. Construction of interface-engineered two-dimensional nanohybrids towards superb fire resistance of epoxy composites. Compos Part A: Appl Sci Manuf. 2022;152:106707.

    Article  CAS  Google Scholar 

  29. Shi CL, Qian XD, Jing JY. Phosphorylated cellulose/Fe3+ complex: a novel flame retardant for epoxy resins. Polym Adv Technol. 2020;33(1):183–9.

    Article  Google Scholar 

  30. Shi CL, Wan M, Hou ZB, Qian XD, Che HL, Qin YP, et al. Co-MOF@MXene hybrids flame retardants for enhancing the fire safety of thermoplastic polyurethanes. Polym Degrad Stab. 2022;204:110119.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation, China (No. 52074247 and 52274232).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, CLS, MW, XDQ; Investigation, CLS, MW, XDQ; Methodology, CLS, XDQ; Writing-original draft, MW, XDQ; Writing-review and editing, CLS, MW, XDQ, HLC, JL All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaodong Qian.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Wan, M., Qian, X. et al. Synthesis of APP@MOFs integrated hybrids flame retardants for reducing flammability of thermoplastic polyurethanes. J Therm Anal Calorim 149, 2777–2787 (2024). https://doi.org/10.1007/s10973-024-12881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12881-7

Keywords

Navigation