Skip to main content
Log in

Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The experimental investigation on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane were performed in the article. By the masterbatch-melt blending technique, the TiO2 particles were well dispersed in TPU/APP composites. The microscopic morphology structure was observed by TEM and SEM. TEM images of TPU–TiO2 masterbatch material showed that the grain sizes of TiO2 particles were 200–400 nm. The SEM result indicated that the TiO2 particles could enhance compatibility and dispersion of APP in TPU. The mechanical properties of TPU composites were characterized by dynamic mechanical analysis (DMA) and tensile tests, respectively. The DMA results indicated that TiO2 particles could improve the viscoelastic property of the TPU/APP composites. The tensile strength achieved a significant improvement with addition of TiO2 particles. APP/TiO2-5 obtains a better value of 344% than APP-1 (277%). Also, the flame-retardant property and thermal stability of the TPU composites were characterized using cone calorimeter test (CCT) and thermogravimetric analysis (TGA), respectively. The CCT results revealed that TiO2 particles could enhance the flame-retardant property of APP in TPU. The peak heat release rate of APP/TiO2-4 containing 0.5% TiO2 decreased to 157.27 kW m−2 from 225.5 kW m−2 of APP-1 sample without any TiO2. The TiO2 particles could promote the formation of carbon layers which restrict the diffusion of fuels into combustion zone and access of oxygen to the underlying materials. The TGA results indicated that TiO2 can improve the thermal stability of TPU/APP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Toldy A, Harakály G, Szolnoki B, Zimonyi E, Marosi G. Flame retardancy of thermoplastics polyurethanes. Polym Degrad Stab. 2012;97(1):2524–30.

    Article  CAS  Google Scholar 

  2. Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120(2):1173–81.

    Article  CAS  Google Scholar 

  3. Wang W, Chen X, Gu Y, Jiao C. Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim. 2017;10:1–9.

    Google Scholar 

  4. Cai GP, Wilkie CA. Fire retardancy of polyurea and silylated -zirconium phosphate composites with ammonium polyphosphate. J Fire Sci. 2013;32(1):35–42.

    Article  Google Scholar 

  5. Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    Article  CAS  Google Scholar 

  6. Duquesne S, Bras M, Bourbigot S, Delobel R, Camino G, Eling B, et al. Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci. 2001;82(13):3262–74.  

    Article  CAS  Google Scholar 

  7. Zhang H, Banfield JF. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem Rev. 2014;114(19):9613–44.

    Article  CAS  Google Scholar 

  8. Pan M, Mei C, Du J, Li G. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos A Appl Sci Manuf. 2014;66(6):128–34.

    Article  CAS  Google Scholar 

  9. Jiao C, Wang H, Zhang Z, Chen X. Preparation and properties of an efficient smoke suppressant and flame‐retardant agent for thermoplastic polyurethane. Polym Adv Technol. 2017;28(12):1690–8.

    Article  CAS  Google Scholar 

  10. Wu C, Ma WX, Chen YP, Li Y, Chen Y, Jing L. Research progress of nanometer titanium dioxide application. Adv Mater Res. 2014;881–883:948–51.

    Article  Google Scholar 

  11. An H. Comparison of the effects of nanometer titanium dioxide with two crystal forms on rabbits blood routine index and organ coefficient in the instillation of non-exposure bronchus toxic contamination. Int J Bioautom. 2014;18(14):15–22.

    CAS  Google Scholar 

  12. Sha LZ, Zhao HF, Xiao GN. Photocatalytic degradation of formaldehyde by silk mask paper loading nanometer titanium dioxide. Fibers Polym. 2013;14(15):976–81.

    Article  CAS  Google Scholar 

  13. Siriwongrungson V, Krumdieck SP, Alkaisi MM. Conformality investigation of titanium dioxide thin films on 3-D micrometer- and nanometer-scale features by pulsed-pressure metal-organic CVD. Chem Vap Depos. 2011;17(16):327–36.

    Article  CAS  Google Scholar 

  14. Kumar CA, Aswani Y, Mayer MT, Peng G, Khaja NM, Michael G. Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells. Adv Mater. 2014;26(25):4309–12.

    Article  Google Scholar 

  15. Li-Yun Y, Hong-Mei S, Zhen-Liang X. PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Polym Sci. 2009;113(3):1763–72.

    Article  Google Scholar 

  16. Al-Mutoki SMM, Al-Ghzawi BAHK, Al-Mulla EAJ, AbdulAmohsin S. Enhancement of mechanical properties of polyamide hexaglycol by dispersion of TiO2 nanofiller. Nano Biomed Eng. 2016;8(2):55–9.

    Article  Google Scholar 

  17. Ahmad J, Deshmukh K. Influence of TiOon the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact. 2013;18(18):287–96.

    Article  CAS  Google Scholar 

  18. Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, et al. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem. 2012;22(13):6088.

    Article  CAS  Google Scholar 

  19. Das S, Nayak GC, Sahu SK, Routray PC, Roy AK, Baskey H. Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide. J Magn Magn Mater. 2015;377:111–6.

    Article  CAS  Google Scholar 

  20. Xie M, Jing L, Jia Z, Lin J, Fu H. Synthesis of nanocrystalline anatase TiO 2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B. J Hazard Mater. 2010;176(25):139–45.

    Article  CAS  Google Scholar 

  21. Noh H, Oh SG, Im SS. Preparation of anatase TiO 2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells. Appl Surf Sci. 2015;333:157–62.

    Article  CAS  Google Scholar 

  22. Xiong J, Yang B, Zhou C, Yang J, Duan H, Huang W, et al. Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Org Electron. 2014;15(47):835–43.

    Article  CAS  Google Scholar 

  23. Quan H, Zhang BQ, Zhao Q, Yuen RKK, Li RKY. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A Appl Sci Manuf. 2016;75(30):1–16.

    Google Scholar 

  24. Petrović ZS, Hong D, Javni I, Erina N, Zhang F, Ilavsk J, et al. Phase structure in segmented polyurethanes having fatty acid-based soft segments. Polymer. 2013;54(31):372–80.

    Article  Google Scholar 

  25. Chatterjee A, Islam MS, Chatterjee A, Islam MS. Fabrication and characterization of TiO2–epoxy nanocomposite. Mater Sci Eng, A. 2008;487(32):574–85.

    Article  Google Scholar 

  26. Luo ML, Tang W, Zhao JQ, Pu CS. Hydrophilic modification of poly(ether sulfone) used TiO2 nanoparticles by a sol–gel process. J Mater Process Technol. 2006;172(33):431–6.

    Article  CAS  Google Scholar 

  27. Pietrasik J, Gaca M, Zaborski M, Okrasa L, Boiteux G, Gain O. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles. Eur Polymer J. 2009;45(34):3317–25.

    Article  CAS  Google Scholar 

  28. Chatterjee A. Effect of nanoTiO2 addition on poly (methyl methacrylate): an exciting nanocomposite. J Appl Polym Sci. 2010;116(6):3396–407.

    CAS  Google Scholar 

  29. Lu QW, Macosko CW. Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer. 2004;45(35):1981–91.

    Article  CAS  Google Scholar 

  30. Meenashisundaram GK, Nai MH, Almajid A, Gupta M. Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater Des. 2015;65:104–14.

    Article  CAS  Google Scholar 

  31. Schartel B, Hull TR. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007;31(5):327–54.

    Article  CAS  Google Scholar 

  32. Lin M, Li B, Li Q, Li S, Zhang S. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121(4):1951–60.

    Article  CAS  Google Scholar 

  33. Dong Y, Zhou G, Yuan H, Yu W, Jiang S. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mater. 2012;209–210(29):34–9.

    Article  Google Scholar 

  34. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate–based inorganic fire-retarded polyester resin. Fire Mater. 2012;36(3):203–15.

    Article  CAS  Google Scholar 

  35. Zhao K, Xu W, Song L, Wang B, Feng H, Hu Y. Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol. 2012;23(5):894–900.

    Article  CAS  Google Scholar 

  36. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics. 2014;266:25–8.

    Article  CAS  Google Scholar 

  37. Feng X, Xing W, Song L, Hu Y, Liew KM. TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chem Eng J. 2015;260:524–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51776101, 51206084), the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011), the Natural Science Foundation of Shandong Province (ZR2017MB016), and the Project of the State Administration of Work Safety (shandong-0039-2017AQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, Y. & Jiao, C. Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 132, 251–261 (2018). https://doi.org/10.1007/s10973-017-6847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6847-6

Keywords

Navigation