Skip to main content
Log in

Performance of thermosolutal discharge for double diffusive mixed convection of hybrid nanofluid in a lid driven concave–convex chamber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, steady behaviors of a thermosolutal mixed convection of Ag–MgO (50–50%)/water hybrid nanofluid are investigated taking into account the effects of concave and convex shaped vertical walls of an enclosure. The incompressible viscous fluid flow is driven by the buoyancy force due to heat source as well as the shear force occurring for the motion of two horizontal walls in the same or opposite directions. One of the objectives is to study the thermal and solutal performances of the hybrid nanofluid with the use of theoretical and experimental correlations. We have found that experimental correlations perform better than theoretical correlations. The detail structure of fluid flow, heat and mass transfer are analyzed for various values of the pertinent parameters, namely Reynolds number (\(50\le \mathrm{Re} < 750\)), thermal Grashof number (\(\mathrm{Gr}_{\mathrm{T}}=5\times 10^{4}\)), Lewis number (\(1\le \mathrm{Le} \le 5\)), Richardson number (\(0.1\le \mathrm{Ri} \le 20\)), Buoyancy ratio (\(1 \le N \le 10\)), geometric parameters (AB) (\(0.9\le A \le 1.1\), \(-0.1\le B \le 0.1\)) and solid volume fraction (\(0.0\le \phi _{\mathrm{hnp}} \le 0.02\)) of the hybrid nanoliquid. In addition, the effects of concavity and convexity of the vertical walls on double diffusion are analyzed and the impacts of hybrid nanofluid on heat and mass transfer are revealed. The steady-state results expose that Nusselt number increases with the geometry having large volume. Moreover, we have shown that the thermal and solutal performances of the hybrid nanofluid are better than the performances in the presence of nanofluid with Brownian motion. The outcomes show that geometry parameters can be treated as an excellent controller of the thermal and solutal performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

L :

Length of cavity (m)

AB :

Geometric parameters

Pr:

Prandtl number

Re:

Reynolds number

Ri:

Richardson number

D :

Mass diffusivity (m\(^2\) s\(^{-1}\))

g :

Gravitational acceleration (ms\(^{-2}\))

Le:

Lewis number, \(\mathrm{Le}=\frac{\alpha }{D}\)

N :

Buoyancy ratio parameter, \(N=\frac{\mathrm{Gr}_{\mathrm{C}}}{\mathrm{Gr}_{\mathrm{T}}}\)

k :

Thermal conductivity (Wm\(^{-1}\)K\(^{-1}\))

p :

Dimensional pressure (Nm\(^{-2}\))

P :

Dimensionless pressure

T :

Dimensional temperature

\(\beta _{\mathrm{T}}\) :

Volumetric expansion coefficient with temperature

\(\beta _{\mathrm{C}}\) :

Volumetric expansion coefficient with mass (concentration) fraction

C :

Dimensional concentration

c :

Dimensionless concentration

\(C_\mathrm{p}\) :

Specific heat (J kg\(^{-1}\) K\(^{-1}\))

Nu:

Local Nusselt number

Sh:

Local Sherwood number

\({\overline{\text {Nu}}}\) :

Average Nusselt number

\({\overline{\mathrm{Sh}}}\) :

Average Sherwood number

\(\mathrm{Gr}_{\mathrm{C}}\) :

Grashof number due to mass diffusion, \(\displaystyle {\frac{g\beta _{{\text {C}}}(C_{\mathrm{h}}-C_{\mathrm{c}})L^{3}}{\nu ^{2}}}\)

\(\mathrm{Gr}_{\mathrm{T}}\) :

Grashof number due to thermal diffusion, \(\displaystyle {\frac{g\beta _{\mathrm{T}}(T_{\mathrm{h}}-T_{\mathrm{c}})L^{3}}{\nu ^{2}}}\)

xy :

Dimensional Cartesian coordinates (m)

XY :

Dimensionless Cartesian coordinates

uv :

Dimensional velocities in xy directions, respectively (ms\(^{-1}\))

UV :

Dimensionless velocities in XY directions, respectively

\(\xi ,\eta\) :

Dimensionless coordinate in computational plane

\(\alpha\) :

Thermal diffusivity (m\(^{2}\) s\(^{-1}\))

\(\beta\) :

Thermal expansion coefficient (K\(^{-1}\))

\(\phi\) :

Volume fraction of the hybrid nanoparticles

\(\rho\) :

Hybrid nanofluid density(kg m\(^{-3}\))

\(\nu\) :

Kinematic viscosity (m\(^2\) s\(^{-1}\))

\(\mu\) :

Dynamic viscosity (Pa s)

\(\psi\) :

Stream function

\(\zeta\) :

Vorticity

\(\theta\) :

Dimensionless temperature

ij :

Cell faces

f:

Fluid

nf:

Nanofluid

hnf:

Hybrid nanofluid

hnp:

Hybrid nanoparticles

Ag:

Solid particle of Ag

MgO:

Solid particle of MgO

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: ASME international mechanical engineering congress and exposition. CA; 1995.

    Google Scholar 

  2. Bahiraei B, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manag. 2018;172:438–56.

    Article  CAS  Google Scholar 

  3. Soylu SK, Atmaca I, Asiltrk M, Dogan A. Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO\(_{2}\) based nanofluids. Appl Therm Eng. 2019;157: 113743.

    Article  Google Scholar 

  4. Sui D, Langker VH, Yu Z. Investigation of thermophysical properties of nanofluids for application in geothermal energy. Energy Procedia. 2017;105:5055–60.

    Article  CAS  Google Scholar 

  5. Verma SK, Tiwari AK. Progress of nanofluid application in solar collectors: a review. Energy Convers Manag. 2015;100:324–46.

    Article  CAS  Google Scholar 

  6. Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774–81.

    Article  CAS  Google Scholar 

  7. Ghaffarkhah A, Afrand M, Talebkeikhah M, Sehat AA, Moraveji MK, Talebkeikhah F, Arjmand M. On evaluation of thermophysical properties of transformer oil-based nanofluids: a comprehensive modeling and experimental study. J Mol Liq. 2020;300: 112249.

    Article  CAS  Google Scholar 

  8. Sidik NAC, Yazid MNWM, Mamat R. A review on the application of nanofluids in vehicle engine cooling system. Int Commun Heat Mass Transf. 2015;68:85–90.

    Article  Google Scholar 

  9. Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13):3187–96.

    Article  CAS  Google Scholar 

  10. Ekiciler R, Arslan K, Turgut O, Kursun B. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim. 2021;143:1637–54.

    Article  CAS  Google Scholar 

  11. Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection of Copper-Titania/Water hybrid nanofluid in an open ended C-shaped enclosure with an isothermal block. J Mol Liq. 2017;246:251–8.

    Article  CAS  Google Scholar 

  12. Selimefendigil F, Oztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    Article  CAS  Google Scholar 

  13. Almeshaal MA, Kalidasan K, Askri F, Velkennedy R, Alsagri AS, Kolsi L. Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNTaluminum oxide hybrid nanofluid. J Therm Anal Calorim. 2020;139(3):2089–98.

    Article  CAS  Google Scholar 

  14. Mehryan SAM, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube-Fe\(_{3}\)O\(_{4}\)/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J Therm Anal Calorim. 2019;138:1541–55.

    Article  CAS  Google Scholar 

  15. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a \(\bot\) shaped cavity filled by a MWCNT-Fe\(_{3}\)O\(_{4}\)/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  16. Takabi T, Salehi S. Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid. Nanofluid Adv Mech Eng. 2014;6: 147059.

    Article  Google Scholar 

  17. Ghalambaz M, Zadeh SMH, Veismoradi A, Sheremet MA, Pop I. Free Convection Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled with a Cu-Al\(_{2}\)O\(_{3}\) Hybrid Nanofluid. Symmetry. 2021;13(1):122.

    Article  CAS  Google Scholar 

  18. Revnic C, Grosan T, Sheremet MA, Pop I. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al\(_{2}\)O\(_{3}\)-water nanofluid with discrete heating. Appl Math Mech. 2020;41:1345–58.

    Article  Google Scholar 

  19. Ismael MA, Armaghani T, Chamkha AJ. Mixed Convection and Entropy Generation in a Lid-Driven Cavity Filled with a Hybrid Nanofluid and Heated by a Triangular Solid. Heat Trans Res. 2018;49:1645–65.

    Article  Google Scholar 

  20. Roslan R, Ali I, Alsabery AI, Bakar N. Mixed Convection in a Lid-Driven Horizontal Rectangular Cavity Filled with Hybrid Nanofluid By Finite Volume Method. J Adv Res Micro Nano Eng. 2020;1:38–49.

    Google Scholar 

  21. Tayebi T, Chamkha AJ. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J Therm Anal Calorim. 2019;139:2165–79.

    Article  Google Scholar 

  22. Fares R, Mebarek-Oudina F, Aissa A, Bilal SM, Oztop HF. Optimal entropy generation in Darcy-Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquid. J Therm Anal Calorim. 2022;147(2):1571–81.

    Article  CAS  Google Scholar 

  23. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/ water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  Google Scholar 

  24. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.

    Article  CAS  Google Scholar 

  25. Goswami KD, Chattopadhyay A, Pandit SK, Sheremet MA. Transient thermogravitational convection for magneto hybrid nanofluid in a deep cavity with multiple isothermal source-sink pairs. Int J Therm Sci. 2022;173: 107376.

    Article  CAS  Google Scholar 

  26. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity. J Therm Anal Calorim. 2019;139:1–16.

    Google Scholar 

  27. Pandit SK, Goswami KD, Chattopadhyay A, Oztop HF. On the analysis of magnetohydrodynamics and magnetic field-dependent viscosity effects on thermogravitational convection of hybrid nanofluid in an enclosure with curved walls. Phys Fluids. 2021;33: 102010.

    Article  CAS  Google Scholar 

  28. Patil PM, Goudar B. Time-dependent mixed convection flow of Ag-MgO/water hybrid nanofluid over a moving vertical cone with rough surface. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11246-2.

    Article  Google Scholar 

  29. Benzema M, Benkahla YK, Labsi N, Ouyahia SE, El Ganaoui M. Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag-MgO/water hybrid nanofluid. J Therm Anal Calorim. 2019;137:1113–32.

    Article  CAS  Google Scholar 

  30. Selimefendigil F, Chamkha AJ. MHD mixed convection of Ag-MgO/water nanofluid in a triangular shape partitioned lid-driven square cavity involving a porous compound. J Therm Anal Calorim. 2021;143:1467–84.

    Article  CAS  Google Scholar 

  31. Jarray A, Mehrez Z, El Cafsi A. Mixed convection Ag-MgO/water hybrid nanofluid flow in a porous horizontal channel. Eur Phys J Spec Top. 2019;228(12):2677–93.

    Article  CAS  Google Scholar 

  32. Selimefendigil F, Oztop HF. Impact of a rotating cone on forced convection of Ag-MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. J Therm Anal Calorim. 2021;143:1485–501.

    Article  CAS  Google Scholar 

  33. Turner JS. Double-diffusive phenomena. Annu Rev Fluid Mech. 1974;6:37–56.

    Article  Google Scholar 

  34. Wang B, Liu Y, Li L. Nanofluid double diffusive natural convection in a porous cavity under multiple force fields. Numer Heat Trans Part A Appl. 2020;77(4):343–60.

    Article  CAS  Google Scholar 

  35. He B, Lua S, Gao D, Chena W, Li X. Lattice Boltzmann simulation of double diffusive natural convection of nanofluids in an enclosure with heat conducting partitions and sinusoidal boundary conditions. Int J Mech Sci. 2019;161–162:48–63.

    Google Scholar 

  36. Eshaghi S, Izadpanah F, Dogonchi AS, Chamkha AJ, Hamida MBB, Alhumade H. The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall. Case Stud Therm Eng. 2021;28: 101541.

    Article  Google Scholar 

  37. Nath R, Murugesan K. Double diffusive mixed convection in a Cu-Al\(_{2}\)O\(_{3}\)/water nanofluid filled backward facing step channel with inclined magnetic field and part heating load conditions. J Energy Storage. 2021;47: 103664.

    Article  Google Scholar 

  38. Nath R, Murugesan K. Numerical investigation of double-diffusive mixed convection of Fe\(_{3}\)O\(_{4}\)/Cu/Al\(_{2}\)O\(_{3}\)-water nanofluid flow through a backward-facing-step channel subjected to magnetic field. Int J Numer Method Heat Fluid Flow. 2021;32(3):889–914.

    Article  Google Scholar 

  39. Hussain S, Geridonmez BP. Mixed bioconvection flow of Ag-MgO/water in the presence of oxytactic bacteria and inclined periodic magnetic field. Int Commun Heat Mass Transf. 2022;134: 106015.

    Article  CAS  Google Scholar 

  40. Pandit SK, Hansda S. On the analysis of thermosolutal mixed convection with Soret and Dufour effects in a two-sided lid-driven deep cavity. Int J Appl Comput Math. 2022;8(1):1–35.

    Article  Google Scholar 

  41. Alleborn N, Raszillier H, Durst F. Lid-driven cavity with heat and mass transport. Int J Heat Mass Transf. 1999;42:833–53.

    Article  CAS  Google Scholar 

  42. Bhuvaneswari M, Sivasankaran S, Kim YJ. Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid driven cavity. Numer Heat Trans Part A. 2011;59(7):543–60.

    Article  Google Scholar 

  43. Hansda S, Pandit SK, Sheu TWH. Thermosolutal discharge of double diffusion mixed convection flow with Brownian motion of nanoparticles in a wavy chamber. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10971-4.

    Article  Google Scholar 

  44. Veilleux J, Coulombe S. A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. J Appl Phys. 2010;108: 104316.

    Article  Google Scholar 

  45. Kim J, Choi CK, Kang YT, Kim MG. Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanosclae Microscale Thermophys Eng. 2006;10:29–39.

    Article  CAS  Google Scholar 

  46. Singh P, Kumar M. Mass transfer in MHD flow of alumina water nanofluid over a flat plate under slip conditions. Alexandria Eng J. 2015;54:383–7.

    Article  Google Scholar 

  47. Pandit SK, Chattopadhyay A. A robust higher order compact scheme for solving general second order partial differential equation with derivative source terms on nonuniform curvilinear meshes. Comput Math Appl. 2017;74(6):1414–34.

    Article  Google Scholar 

  48. Pandit SK, Kalita JC, Dalal DC. A fourth-order accurate compact scheme for the solution of steady Navier-Stokes equations on non-uniform grids. Comput Fluids. 2008;37(2):121–34.

    Article  CAS  Google Scholar 

  49. Pandit SK, Chattopadhyay A, Oztop HF. A fourth order compact scheme for heat transfer problem in porous media. Comput Math Appl. 2016;71(3):805–32.

    Article  Google Scholar 

  50. Lele SK. Compact finite difference schemes with spectral like resolution. J Comput Phys. 1992;103:16–42.

    Article  Google Scholar 

  51. Van Der Vorst H. BiCGSTAB: A fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J Sci Comput. 1992;13:631–44.

    Article  Google Scholar 

  52. Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transf. 2017;114:1054–66.

    Article  CAS  Google Scholar 

  53. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamental and theory. Phys Rep. 2019;790(3):1–48.

    CAS  Google Scholar 

  54. Al-Amiri AM, Khanafer K, Pop I. Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. Int J Therm Sci. 2007;46:662–71.

    Article  CAS  Google Scholar 

  55. Bettaibi S, Kuznik F, Sediki E. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Physica A. 2016;444:311–26.

    Article  Google Scholar 

  56. Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B Fluids. 2010;29:472–82.

    Article  Google Scholar 

  57. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.

    Article  CAS  Google Scholar 

  58. Saghir MZ, Ahadi A, Mohamad A, Srinivasan S. Water aluminum oxide nanofluid benchmark model. Int J Therm Sci. 2016;109:148–58.

    Article  CAS  Google Scholar 

  59. Mahmud S, Das PK, Hyder N, Islam AKMS. Free convection in an enclosure with vertical wavy walls. Int J Therm Sci. 2002;41:440–6.

    Article  Google Scholar 

  60. Corvaro F, Paroncini M. Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques. Exp Therm Fluid Sci. 2007;31:721–39.

    Article  Google Scholar 

  61. Mikhailenko SA, Sheremet MA, Mahian O. Effects of uniform rotation and porous layer on free convection in an enclosure having local heat source. Int J Therm Sci. 2019;138:276–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samrat Hansda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansda, S., Pandit, S.K. Performance of thermosolutal discharge for double diffusive mixed convection of hybrid nanofluid in a lid driven concave–convex chamber. J Therm Anal Calorim 148, 1109–1131 (2023). https://doi.org/10.1007/s10973-022-11699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11699-5

Keywords

Navigation