Skip to main content
Log in

Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present numerical study, mixed flow of the non-Newtonian water/Al2O3 nanofluid with 0–4% nanoparticles volume fractions (φ) inside a two-dimensional square cavity with hot and cold lid-driven motion and porous media is simulated at Richardson numbers (Ri) of 0.01, 10 and 100 and Darcy numbers (Da) of 10−4 ≤ Da ≤ 10−2 using Fortran computer code. The obtained results for temperature domain, velocity, Nusselt number and streamlines indicate that by increasing Richardson number and decreasing axial velocity parameter of walls and similarity of flow behavior to natural flow mechanism, variations of velocity are reduced, which is due to the reduction in fluid momentum. By increasing Darcy number, penetrability of fluid motion enhances and fluid lightly moves along the cavity. Figuration of streamlines at lower Richardson numbers highly depends on the Darcy number changes. In case (2), due to the counterflow motion and buoyancy force, distinction of flow domain profiles is more obvious. On the other hand, this issue causes more velocity gradients and vortexes in special sections of cavity (central regions of cavity). In case (2), the behavior of streamlines is affected by some parameters such as variations of Darcy number, nanoparticles volume fraction and Richardson number more than case (1). By increasing Darcy number, flow lightly passes among hot and cold sources and leads to improve the heat transfer. Moreover, reduction in flow penetrability in cavity results in the reduction in fluid flow in its direction, sectional distribution and regions with higher temperature. Consequently, in these regions the growth of thermal boundary layer is more significant. In case (2), at lower Richardson numbers compared to higher ones, the affectability of lid-driven motion contrary to buoyancy force caused by density variations is less because of higher fluid momentum. At Ri = 0.01, because of the strength of lid-driven motion, flow direction is compatible with lid-driven motion. Also, temperature distribution is not uniform, and in these regions, fluid has the minimum velocity which leads to the enhancement of dimensionless temperature. In both studied cases, the increment of nanoparticles volume fraction as well as Darcy number and reduction in Richardson number result in the improvement of temperature distribution and decrease in dimensionless temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J kg−1 K−1)

Da :

Darcy number

g :

Gravitational acceleration (m s−2)

Gr :

Grashof number

h :

Heat transfer coefficient (W m−2 K−1)

H :

Enclosure length (m)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability

Nu :

Nusselt number

P :

Dimensionless pressure

p :

Pressure (N m−2)

Pr :

Prandtl number

Re :

Reynolds number

Ri :

Richardson number

T :

Temperature (K)

u, v :

Velocity components (m s−1)

U, V :

Dimensionless velocity components

V b :

Wall velocity (m s−1)

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates

ρ :

Density (kg m−3)

θ :

Dimensionless temperature

μ :

Dynamic viscosity (kg m s−1)

α :

Thermal diffusivity (m−2 s)

β :

Thermal expansion coefficient (1 K−1)

ν :

Kinematic viscosity (m2 s−1)

φ :

Volume fraction of nanoparticles

app:

Apparent

avg:

Average

C:

Cold

eff:

Effective

f:

Fluid

H:

Hot

nf:

Nanofluid

s:

Nanoparticle

References

  1. Moghiman M, Rahmanian B, Safaei MR, Goudarzi M. Numerical investigation of heat transfer in circular perforated plates exposed to parallel flow and suction. Int J Adv Des Manuf Tech. 2008;1(33):43–54.

    Google Scholar 

  2. Zubir MNM, Muhamad MR, Amiri A, Badarudin A, Kazi SN, Oon CS, Abdullah HT, Gharehkhani S, Yarmand H. Heat transfer performance of closed conduit turbulent flow: constant mean velocity and temperature do matter! J Taiwan Inst Chem Eng. 2016;64:285–98.

    CAS  Google Scholar 

  3. Safaei MR, Ranjbarzadeh R, Hajizadeh A, Bahiraei M, Afrand M, Karimipour A. Simultaneous effects of cobalt ferrite and silica nanoparticles on the thermal conductivity of antifreeze: new hybrid nanofluid for refrigeration condensers. Int J Refrig. 2018. https://doi.org/10.1016/j.ijrefrig.2018.12.007.

    Article  Google Scholar 

  4. Yarmand H, Gharehkhani S, Kazi SN, Sadeghinezhad E, Safaei MR. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid. Sci World J. 2014;2014:369593. https://doi.org/10.1155/2014/369593.

    Article  Google Scholar 

  5. Hosseini SM, Safaei MR, Goodarzi M, Alrashed AAAA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.061.

    Article  CAS  Google Scholar 

  6. Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.069.

    Article  CAS  Google Scholar 

  7. Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NWBM. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys A Stat Mech Appl. 2019;519:209–16.

    CAS  Google Scholar 

  8. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NWBM. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys A Stat Mech Appl. 2019;521:138–45. https://doi.org/10.1016/j.physa.2019.01.051.

    Article  CAS  Google Scholar 

  9. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135:1643–54. https://doi.org/10.1007/s10973-018-7559-2.

    Article  CAS  Google Scholar 

  10. Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A. Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection. Phys A Stat Mech Appl. 2018;509:210–33. https://doi.org/10.1016/j.physa.2018.06.013.

    Article  CAS  Google Scholar 

  11. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AAAA, Shabani GAS, Goodarzi M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29:273–82. https://doi.org/10.1016/j.apt.2017.11.013.

    Article  CAS  Google Scholar 

  12. Haghighi SS, Goshayeshi HR, Safaei MR. Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int J Heat Mass Transf. 2018;125:640–7. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.122.

    Article  Google Scholar 

  13. Abdollahi-Moghaddam M, Motahari K, Rezaei A. Performance characteristics of low concentrations of CuO/water nanofluids flowing through horizontal tube for energy efficiency purposes; an experimental study and ANN modeling. J Mol Liq. 2018;271C:342–52. https://doi.org/10.1016/j.molliq.2018.08.149.

    Article  CAS  Google Scholar 

  14. Motahari K, Abdollahi-Moghaddam M, Moradian M. Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20-80)/20W50 hybrid nano-lubricant. Chin J Chem Eng. 2018;26:152–8.

    CAS  Google Scholar 

  15. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023.

    Article  CAS  Google Scholar 

  16. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005.

    Article  CAS  Google Scholar 

  17. Abdollahi A, Karimi Darvanjooghi MH, Karimipour A, Safaei MR. Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica. 2018;53:3739–57. https://doi.org/10.1007/s11012-018-0916-1.

    Article  Google Scholar 

  18. Rejvani M, Abdollahi-Moghaddam M, Alamdari P. Using statistical and optimization tools for determining optimal formulations and operating conditions for Al2O3/(EG + Water) nanofluids for cooling system. Therm Sci Eng Prog. 2018. https://doi.org/10.1016/j.tsep.2018.07.003.

    Article  Google Scholar 

  19. Karimipour A, Bagherzadeh SA, Taghipour A, Abdollahi A, Safaei MR. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Phys A Stat Mech Appl. 2019;521:89–97. https://doi.org/10.1016/j.physa.2019.01.055.

    Article  CAS  Google Scholar 

  20. Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.089.

    Article  CAS  Google Scholar 

  21. Garoosi F, Safaei MR, Dahari M, Hooman K. Eulerian-Lagrangian analysis of solid particle distribution in an internally heated and cooled air-filled cavity. Appl Math Comput. 2015;250:28–46. https://doi.org/10.1016/j.amc.2014.10.068.

    Article  Google Scholar 

  22. Nourollahi I, Zafarmand B, Safaiy MR, Maghmoumi Y. An investigation of lid driven cavity flow using large eddy simulation. Int J Adv Des Manuf. 2008;2(1):25–36.

    Google Scholar 

  23. Karimipour A, Afrand M, Akbari M, Safaei MR. Simulation of fluid flow and heat transfer in the inclined enclosure. Int J Mech Aerosp Eng. 2012;6:86–91.

    Google Scholar 

  24. Safaiy MR, Maghmoumi Y, Karimipour A. Numerical investigation of turbulence mixed convection heat transfer of water and drilling mud inside a square enclosure by finite volume method. In: AIP conference proceedings, AIP, 2012;732–739.

  25. Moradi H, Bazooyar B, Etemad SG, Moheb A. Influence of the geometry of cylindrical enclosure on natural convection heat transfer of Newtonian nanofluids. Chem Eng Res Des. 2015;94:673–80. https://doi.org/10.1016/j.cherd.2014.10.008.

    Article  CAS  Google Scholar 

  26. Moradi H, Bazooyar B, Moheb A, Etemad SG. Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure. Chin J Chem Eng. 2015;23:1266–74.

    CAS  Google Scholar 

  27. Ghodsinezhad H, Sharifpur M, Meyer JP. Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Int Commun Heat Mass Transf. 2016;76:316–24.

    CAS  Google Scholar 

  28. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys A Stat Mech Appl. 2018;509:515–35. https://doi.org/10.1016/j.physa.2018.06.034.

    Article  CAS  Google Scholar 

  29. Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20. https://doi.org/10.1016/j.ijthermalsci.2013.08.003.

    Article  CAS  Google Scholar 

  30. Abdollahi-Moghaddam M, Rejvani M, Alamdari P. Determining optimal formulations and operating conditions for Al2O3/water nanofluid flowing through a microchannel heat sink for cooling system purposes using statistical and optimization tools. Therm Sci Eng Prog. 2018;8:517–24. https://doi.org/10.1016/j.tsep.2018.10.009.

    Article  Google Scholar 

  31. Amiri MH, Keshavarzi A, Karimipour A, Bahiraei M, Goodarzi M, Esfahani JA. A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls. Heat Mass Transf. 2019. https://doi.org/10.1007/s00231-019-02583-4.

    Article  Google Scholar 

  32. Goodarzi M, Javid S, Sajadifar A, Nojoomizadeh M, Motaharipour SH, Bach Q-V, Karimipour A. Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube. Int J Numer Methods Heat Fluid Flow. 2019;29(5):1699–723. https://doi.org/10.1108/HFF-07-2018-0368.

    Article  Google Scholar 

  33. Rahimi Gheynani A, Ali Akbari O, Zarringhalam M, Ahmadi Sheikh Shabani G, Alnaqi AA, Goodarzi M, Toghraie D. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int J Numer Methods Heat Fluid Flow. 2018.

  34. Maleki H, Safaei MR, Alrashed AAAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135:1655–66. https://doi.org/10.1007/s10973-018-7277-9.

    Article  CAS  Google Scholar 

  35. Maghmoumi Y, Alavi MA, Safaiy MR, Norollahi I. Numerical analyses of steady non-Newtonian flow over flat plate on intermediate Reynolds Numbers by finite volume method. Int J Adv Des Manuf Tech. 2008;1(4):21–31.

    Google Scholar 

  36. Abdollahi-Moghaddam M, Motahari K. Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Appl Therm Eng. 2017;123:1419–33. https://doi.org/10.1016/j.applthermaleng.2017.05.200.

    Article  CAS  Google Scholar 

  37. Bozorg MV, Siavashi M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int J Mech Sci. 2019;151:842–57.

    Google Scholar 

  38. Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703. https://doi.org/10.1016/j.ijmecsci.2017.09.031.

    Article  Google Scholar 

  39. Alsabery AI, Chamkha AJ, Hussain SH, Saleh H, Hashim I. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv Powder Technol. 2015;26:1230–44. https://doi.org/10.1016/j.apt.2015.06.005.

    Article  CAS  Google Scholar 

  40. Kefayati GHR. Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 2016;299:127–49. https://doi.org/10.1016/j.powtec.2016.05.032.

    Article  CAS  Google Scholar 

  41. Kefayati GHR. FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci. 2015;95:29–46.

    CAS  Google Scholar 

  42. Kefayati GHR. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;112:709–44.

    CAS  Google Scholar 

  43. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    CAS  Google Scholar 

  44. Mahdi RA, Mohammed HA, Munisamy KM, Saeid NH. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew Sustain Energy Rev. 2015;41:715–34.

    CAS  Google Scholar 

  45. Ghazvini M, Shokouhmand H. Investigation of a nanofluid-cooled microchannel heat sink using fin and porous media approaches. Energy Convers Manag. 2009;50:2373–80.

    CAS  Google Scholar 

  46. Sheikhzadeh GA, Nazari S. Numerical study of natural convection in a square cavity filled with a porous medium saturated with nanofluid. Transp Phenom Nano Micro Scale. 2013;1:138–46.

    Google Scholar 

  47. Toosi MH, Siavashi M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J Mol Liq. 2017;238:553–69.

    CAS  Google Scholar 

  48. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci Rep. 2017;7:2357.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghasemi K, Siavashi M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq. 2017;233:415–30.

    CAS  Google Scholar 

  50. Rashad AM, Chamkha AJ, Abdou MMM. Mixed convection flow of non-Newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid. J Appl Fluid Mech. 2013;6(2):301–9.

    Google Scholar 

  51. Gorla RSR, Chamkha A. Free convection past a vertical plate embedded in a porous medium saturated with a non-Newtonian nanofluid. J Nanofluids. 2013;2:297–302.

    CAS  Google Scholar 

  52. Chamkha AJ, Rashad M, Subba Reddy Gorla R. Non-similar solutions for mixed convection along a wedge embedded in a porous medium saturated by a non-Newtonian nanofluid: natural convection dominated regime. Int J Numer Methods Heat Fluid Flow. 2014;24:1471–86.

    Google Scholar 

  53. Kefayati GHR, Tang H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int J Hydrogen Energy. 2017;42:17284–327.

    CAS  Google Scholar 

  54. Kefayati GHR. FDLBM simulation of magnetic field effect on mixed convection in a two sided lid-driven cavity filled with non-Newtonian nanofluid. Powder Technol. 2015;280:135–53.

    CAS  Google Scholar 

  55. Kefayati GHR. Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;108:1481–500.

    Google Scholar 

  56. Kefayati GHR. Mesoscopic simulation of mixed convection on non-Newtonian nanofluids in a two sided lid-driven enclosure. Adv Powder Technol. 2015;26:576–88.

    CAS  Google Scholar 

  57. Kefayati GHR, Tang H, Chan A, Wang X. A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media. Comput Fluids. 2018;176:226–44.

    Google Scholar 

  58. Bejan A. Convection heat transfer. Hoboken: John Wiley & Sons Inc; 2004.

    Google Scholar 

  59. Mandal PK, Chakravarty S, Mandal A, Amin N. Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery. Appl Math Comput. 2007;189:766–79.

    Google Scholar 

  60. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39:775–84.

    Google Scholar 

  61. Santra AK, Sen S, Chakraborty N. Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid. Int J Therm Sci. 2008;47:1113–22.

    CAS  Google Scholar 

  62. Nazari S, Akbari E. Numerical investigation of non-Newtonian nanofluid mixed convection in a two-opposite direction lid-driven cavity with variable properties. Heat Transf Asian Res. 2018;48(2):601–23.

    Google Scholar 

  63. Patel HE, Sundarrajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluid. Pramana J Phys. 2005;65:863–9.

    CAS  Google Scholar 

  64. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    CAS  Google Scholar 

  65. Mahian O, Lioua K, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  66. Mahian O, Lioua K, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  67. Dehghan M, Rahmani Y, Ganji DD, Saedodin S, Valipour MS, Rashidi S. Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: homotopy perturbation method versus numerical analysis. Renew Energy. 2015;74:448–55.

    Google Scholar 

  68. Dehghan M, Jamal-Abad MT, Rashidi S. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Convers Manag. 2014;85:264–71.

    Google Scholar 

  69. Hassan H, Harmand S. An experimental and numerical study on the effects of the flat heat pipe wick structure on its thermal performance. Heat Transf Eng. 2015;36(3):278–89.

    CAS  Google Scholar 

  70. Menni Y, Azzi A, Chamkha AJ, Harmand S. Effect of wall-mounted V-baffle position in a turbulent flow through a channel: analysis of best configuration for optimal heat transfer. Int J Numer Meth Heat Fluid Flow. 2018. https://doi.org/10.1108/HFF-06-2018-0270.

    Article  Google Scholar 

  71. Lotfi B, Sundén B, Wang Q. An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Appl Energy. 2016;162:1282–302.

    Google Scholar 

  72. Guerrero-Martínez FJ, PL Younger, N Karimi, Kyriakis S. Three-dimensional numerical simulations of free convection in a layered porous enclosure. Int J Heat Mass Transf. 2017;106:1005–13.

    Google Scholar 

  73. Costa VAF, Oliveira LA, Baliga BR, Sousa ACM. Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method. Numer Heat Transf Part A Appl. 2004;45(7):675–97.

    Google Scholar 

  74. Lakehal A, NaitBouda N, Harmand S. Numerical study of convective heat transfer in T-bifurcating channel. Heat Transf Asian Res. 2017;46(8):1262–80.

    Google Scholar 

  75. Torabi M, Peterson GP, Torabi M, Karimi N. A thermodynamic analysis of forced convection through porous media using pore scale modeling. Int J Heat Mass Transf. 2016;99:303–16.

    Google Scholar 

  76. Li Y, Zhang F, Sunden B, Xie G. Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates. Appl Therm Eng. 2014;73(1):185–95.

    Google Scholar 

  77. Lotfi B, Zeng M, Sundén B, Wang Q. 3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators. Energy. 2014;73:233–57.

    Google Scholar 

  78. HajatzadehPordanjani A, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7982-4.

    Article  Google Scholar 

  79. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;1–16.

  80. Ellahi R, Zeeshan A, Hussain F, Abbas T, Thermally charged MHD bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles through slippery walls. Coatings. 2019;9:300. ISSN 2079-6412.

  81. Hassan M, Ellahi R, Zeeshan A, Bhatti MM. Analysis of natural convective flow of non-Newtonian fluid under the effects of nanoparticles of different materials. J Process Mech Eng. 2019;233(3):643–52.

    Google Scholar 

  82. Rahmati AR, Akbari OA, Marzban A, Toghraie D, Karimi R, Pourfattah F. Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm Sci Eng Prog. 2017. https://doi.org/10.1016/j.tsep.2017.12.006.

    Article  Google Scholar 

  83. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    CAS  Google Scholar 

  84. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E. 2017;93:167–78.

    CAS  Google Scholar 

  85. Shirvan KM, Ellahi R, Mamourian M, Mirzakhanlar S. Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl Therm Eng. 2016;109:761–74.

    Google Scholar 

  86. Toghraie D, Mahmoudi M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7254-3.

    Article  Google Scholar 

  87. Ellahi R, Raza M, Akbar NS. Study of peristaltic flow of nanofluid with entropy generation in a porous medium. J Porous Media. 2017;20(5):461–78.

    Google Scholar 

  88. Jourabian v, Darzi AAR, Toghraie D, Akbari OA. Melting process in porous media around two hot cylinders: numerical study using the lattice Boltzmann method. Phys A. 2018;509:316–35.

    CAS  Google Scholar 

  89. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R, Vafai K. Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int J Heat Mass Transf. 2017;105:811–25.

    Google Scholar 

  90. Azadbakhti R, Pourfattah F, Ahmadi A, Akbari OA, Toghraie D. Eulerian-Eulerian multi-phase RPI modeling of turbulent forced convective of boiling flow inside the tube with porous medium. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/hff-03-2019-0194.

    Article  Google Scholar 

  91. Bhatti MM, Zeeshan A, Ellahi R, Shit GC. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy–Brinkman–Forchheimer porous medium. Adv Powder Technol. 2018;29:1189–97.

    Google Scholar 

  92. Javadzadegan A, Joshaghani M, Moshfegh A, Akbari OA, Afrouzi HH, Toghraie D. Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: an LBM approach. Physica A. 2019. https://doi.org/10.1016/j.physa.2019.122439.

    Article  Google Scholar 

  93. Hassan M, Marin M, Alsharif A, Ellahi R. Convection heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382:2749–53.

    CAS  Google Scholar 

  94. Fetecau C, Ellahi R, Khan M, Shah NA. Combine porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J Porous Media. 2018;21(7):589–605.

    Google Scholar 

  95. Zeeshan A, Shehzad N, Ellahi R, Alamri SZ. Convective Poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation. Neural Comput Appl. 2018;30(11):3371–82.

    Google Scholar 

  96. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    CAS  Google Scholar 

  97. Bhatti MM, Ahmed Zeeshan R, Ellahi AB, Kadir A. Effects of coagulation on the two phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chin J Phys. 2019;58:222–34.

    CAS  Google Scholar 

  98. Sheikholeslami M, Ellahi R, Shafee A, Li Z. Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: an application of entropy generation and exergy loss. Int J Numer Meth Heat Fluid Flow. 2019;29(3):1079–102.

    Google Scholar 

  99. Ellahi R, Hussain F, Ishtiaq F, Hussain A. Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an approach to upgrade industrial sieves/filters, Pramana. J Phys. 2019;93:34.

    Google Scholar 

  100. Prakash J, Tripathi D, Triwari AK, Sait SM, Ellahi R. Peristaltic pumping of nanofluids through tapered channel in porous environment: applications in blood flow. Symmetry. 2019;11(7):868.

    CAS  Google Scholar 

  101. Hadavand M, Yousefzadeh S, Akbari OA, Pourfattah F, Minh Nguyen H, Asadi A. A Numerical investigation on the effects of mixed convection of Ag-water nanofluid inside a sim-circular lid-driven cavity on the temperature of an electronic silicon chip. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114298.

    Article  Google Scholar 

  102. Miansari M, Nazari M, Toghraie D, Akbari OA. Investigating the thermal energy storage inside a double-wall tankutilizing phase-change materials (PCMs). J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08573-2.

    Article  Google Scholar 

  103. Mir S, Akbari OA, Toghraie D, Sheikhzadeh G, Marzban A, Mir S, Talebizadeh Sardari P. A comprehensive study of two-phase flow and heat transfer of water/Ag nanofluid in an elliptical curved minichannel. Chin J Chem Eng. 2019. https://doi.org/10.1016/j.cjche.2019.07.007.

    Article  Google Scholar 

  104. Bazdar H, Toghraie D, Pourfattah F, Akbari OA. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wave length. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08637-3.

    Article  Google Scholar 

  105. Goodarzi H, Akbari OA, Sarafraz MM, Mokhtari M, Safaei MR, Shabani GAS. Numerical simulation of natural convection heat transfer of nanofluid with Cu, MWCNT and Al2O3 nanoparticles in a cavity with different aspect ratios. J Therm Sci Eng Appl. 2019. https://doi.org/10.1115/1.4043809.

    Article  Google Scholar 

  106. Jalali E, Akbari OA, Sarafraz MM, Abbas T, Safaei MR. Heat transfer of oil/MWCNT nanofluid jet injection inside a rectangular microchannel. Symmetry. 2019;11:757. https://doi.org/10.3390/sym11060757.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, S., Ellahi, R., Sarafraz, M.M. et al. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim 140, 1121–1145 (2020). https://doi.org/10.1007/s10973-019-08841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08841-1

Keywords

Navigation