Skip to main content
Log in

Thermosolutal discharge of double diffusion mixed convection flow with Brownian motion of nanoparticles in a wavy chamber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we have conducted a numerical investigation to investigate thermal and solutal performances of thermosolutal mixed convection flow in a wavy chamber with the influence of Brownian motion of nanoparticles. The Cu-water nanofluid is used to fill the chamber. The bottom boundary is nonuniformly concentrated and heated while the other boundaries of the chamber are fixed at constant low concentration and cold temperature. The upper and lower walls of the chamber are in motion with constant velocity. Depending on the directions of motion of the upper and lower walls, we have considered four cases. The governing equations representing incompressible viscous flows are the Navier–Stokes (N–S) equations in the form of mass, momentum, temperature and concentration equations. A compact finite difference scheme is adopted to solve those equations. We have applied KKL model of Koo-Kleinstreuer and Li for taking into account the effects of Brownian motion of Cu-water nanofluid properties in addition to the effective thermal conductivity and the dynamic viscosity. The numerical results are explored for getting a better understanding of the effects of thermal Grashof number (\({\mathrm{Gr}}_{\mathrm{T}}=10^{4}\)), Buoyancy ratio number (\(N=1\)), Richardson number (\(0.1\le {\mathrm {Ri}}\le 10.0\)), Lewis number (\(1\le {\mathrm{Le}}\le 10\)), the wavy surface amplitude (\(0.0\le \lambda \le 0.06\)), solid volume fraction (\(0.0\le \phi \le 0.04\)) and undulation number of the vertical walls (\(0\le d \le 2\)). Results reveal that nanoparticles are responsible for the enhancement of heat transfer and the decrement of mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

L :

Length of cavity (m)

Pr:

Prandtl number

Re:

Reynolds number

Ri:

Richardson number

D :

Mass diffusivity (\(\hbox {m}^2\)   \(\hbox {s}^{-1}\))

d :

Undulation of the wavy wall

g :

Gravitational acceleration (\(\hbox {m s}^{-2}\))

Le:

Lewis number, \({\mathrm{Le}}=\frac{\alpha }{D}\)

N :

Buoyancy ratio parameter, \(N=\frac{{\mathrm{Gr}}_{\mathrm{C}}}{{\mathrm{Gr}}_{\mathrm{T}}}\)

k :

Thermal conductivity (\(\hbox {W m}^{-1}\) \(\hbox {K}^{-1}\))

p :

Dimensional pressure (\(\hbox {N m}^{-2}\))

P :

Dimensionless pressure

T :

Dimensional temperature

\(\beta _{\mathrm{T}}\) :

Volumetric expansion coefficients with temperature

\(\beta _{\mathrm{C}}\) :

Volumetric expansion coefficient with mass (concentration) fraction

C :

Dimensional concentration

c :

Dimensionless concentration

\(\kappa _{\mathrm{b}}\) :

Boltzmann constant

\(C_{\mathrm{p}}\) :

Specific heat (J \(\hbox {kg}^{-1}\) \(\hbox {K}^{-1}\))

Nu:

Local Nusselt number

Sh:

Local Sherwood number

\({\overline{\mathrm{Nu}}}\) :

Average Nusselt number

\({\overline{\mathrm{Sh}}}\) :

Average Sherwood number

\({\mathrm{Gr}}_{\mathrm{C}}\) :

Grashof number due to mass diffusion, \(\displaystyle {\frac{g\beta _{\mathrm{C}}(C_{\mathrm{h}}-C_{\mathrm{c}})L^{3}}{\nu ^{2}}}\)

\({\mathrm{Gr}}_{\mathrm{T}}\) :

Grashof number due to thermal diffusion, \(\displaystyle {\frac{g\beta _{\mathrm{T}}(T_{\mathrm{h}}-T_{\mathrm{c}})L^{3}}{\nu ^{2}}}\)

xy :

Dimensional Cartesian coordinates (m)

XY :

Dimensionless Cartesian coordinates

uv :

Dimensional velocities in xy directions, respectively (\(\hbox {m s}^{-1}\))

UV :

Dimensionless velocities in XY directions, respectively

\(\xi\), \(\eta\) :

Dimensionless coordinate in computational plane

\(\alpha\) :

Thermal diffusivity (\(\hbox {m}^{2}\) \(\hbox {s}^{-1}\))

\(\beta\) :

Thermal expansion coefficient (\(\hbox {K}^{-1}\))

\(\phi\) :

Volume fraction of the nanoparticles

\(\rho\) :

Nanofluid density(kg \(\hbox {m}^{-3}\))

\(\nu\) :

Kinematic viscosity (\(\hbox {m}^2\) \(\hbox {s}^{-1}\))

\(\mu\) :

Dynamic viscosity (Pa s)

\(\lambda\) :

Amplitude of the waviness

\(\psi\) :

Streamfunction

\(\zeta\) :

Vorticity

\(\theta\) :

Dimensionless temperature

i,j:

Cell faces

c:

Cold

h:

Hot

f:

Fluid

nf:

Nanofluid

static:

Magnitudes without considering the Brownian motion

Brownian:

Magnitudes considering also the Brownian motion

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: ASME international mechanical engineering congress and exposition. San Francisco, CA (1995).

  2. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in \(H{_ 2}\)O-ethylene glycol mixture. J Therm Anal Calorim. 2019;138:3007–21.

    Article  CAS  Google Scholar 

  3. Mousavi S, Siavashi M, Heyhat MM. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano enhanced PCM and multiple horizontal fins. Numer Heat Transf Part A. 2019;75(8):560–77.

    Article  Google Scholar 

  4. Barkalina N, Charalambous C, Jones C, Coward K. Nanotechnology in reproductive medicine: emerging applications of nanomaterials. Nanomed Nanotechnol Biol Med. 2014;10(5):921–38.

    Article  CAS  Google Scholar 

  5. Saidina DS, Abdullah MZ, Hussain M. Metal oxides nanofluids in electronic cooling: a review. J Mater Sci Mater Electron. 2020;31:4381–98.

    Article  CAS  Google Scholar 

  6. Saleem KB, Koufi L, Alshara AK, Kolsi L. Double-diffusive natural convection in a solar distiller with external fluid stream cooling. Int J Mech Sci. 2020;181:105728.

    Article  Google Scholar 

  7. Kianpour R, Ansarifar GR. Assessment of the nanofluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nanofluid as a coolant using thermal hydraulic and neutronics analysis. Ann Nucl Energy. 2019;133:623–36.

    Article  CAS  Google Scholar 

  8. Soliman AMA, Rahman AKA, Ookawara S. Enhancement of vapor compression cycle performance using nanofluids. J Therm Anal Calorim. 2019;135:1505–20.

    Article  Google Scholar 

  9. Eastman JA, Choi SUS, Li S, Yu W, Thompson TJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Phys Lett Appl. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  10. Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Saleem KB, Khazal EA. Numerical simulation for heat transfer analysis in laminar flow of CuO-Water nanofluid in tubes. In: Proceedings of the 3rd international conference of fluid flow, heat and mass transfer (FFHMT’16). https://doi.org/10.11159/ffhmt16.120.

  12. Torki M, Etesami N. Experimental investigation of natural convection heat transfer of SiO\(_2\)/water nanofluid inside inclined enclosure. J Therm Anal Calorim. 2020;139:1565–74.

    Article  CAS  Google Scholar 

  13. Mehmood K, Hussain S, Sagheer M. Numerical simulation of MHD mixed convection in alumina-water nanofluid filled square porous cavity using KKL model: effects of non-linear thermal radiation and inclined magnetic field. J Mol Liq. 2017;238:485–98.

    Article  CAS  Google Scholar 

  14. Ramezanpour M, Siavashi M. Application of SiO\(_{2}\)-water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135:565–80.

    Article  CAS  Google Scholar 

  15. Vasilyeva M, Babaei M, Chung ET, Spiridonov D. Multiscale modeling of heat and mass transfer in fractured media for enhanced geothermal systems applications. Appl Math Model. 2019;67:159–78.

    Article  Google Scholar 

  16. Kapicioglua A, Esen H. Experimental investigation on using Al\(_2\)O\(_3\)/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers. Appl Therm Eng. 2020;165:114559.

    CAS  Google Scholar 

  17. Xu Z, Kleinstreuer C. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Conver Manag. 2014;87:504–12.

    Article  Google Scholar 

  18. Abu-Nada E, Oztop HF. Numerical analysis of \(Al_{2}O_{3}\)/water nanofluids natural convection in a wavy walled cavity. Numer Heat Transf Part A Appl. 2011;59:403–19.

    Article  CAS  Google Scholar 

  19. Nikfar M, Mahmoodi M. Meshless local Petrov–Galerkin analysis of free convection of nanofluid in a cavity with wavy side walls. Eng Anal Bound Elem. 2012;36:433–55.

    Article  Google Scholar 

  20. Cho CC, Chen CL, Chen CK. Natural convection heat transfer performance in complex-wavy wall enclosed cavity filled with nanofluid. Int J Therm Sci. 2012;60:255–63.

    Article  CAS  Google Scholar 

  21. Esmaeilpour M, Abdollahzadehb M. Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int J Therm Sci. 2012;52:127–36.

    Article  CAS  Google Scholar 

  22. Sheremet MA, Pop I, Shenoy A. Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model. Int Commun Heat Mass Transf. 2015;67:66–72.

    Article  CAS  Google Scholar 

  23. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.

    Article  CAS  Google Scholar 

  24. Hussain S, Jamal M, Maatki C, Ghachem K, Kolsi L. MHD mixed convection of Al\(_2\)O\(_3\)-Cu-water hybrid nanofluid in a wavy channel with incorporated fixed cylinder. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10260-6.

    Article  Google Scholar 

  25. Cho CC, Chen CL, Chen CK. Mixed convection heat transfer performance of water-based nanofluids in lid-driven cavity with wavy surfaces. Int J Therm Sci. 2013;68:181–90.

    Article  CAS  Google Scholar 

  26. Kashani S, Ranjbar AA, Mastiani M, Mirzaei H. Entropy generation and natural convection of nanoparticle-water mixture (nanofluid) near water density inversion in an enclosure with various patterns of vertical wavy walls. Appl Math Comput. 2014;226:180–93.

    Google Scholar 

  27. Sheremet MA, Pop I. Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. ASME J Heat Transf. 2015;137:072601-1-8.

  28. Sheremet MA, Pop I, Shenoy A. Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur Phys J Plus. 2016;131:1–12.

    Article  CAS  Google Scholar 

  29. Shenoy A, Sheremet MA, I. Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. CRC Press Taylor & Francis Group, Boca Raton, New York (2016).

  30. Saleem KB, Al-Kouz W, Chamkha A. Numerical analysis of rarefied gaseous flows in a square partially heated two-sided wavy cavity with internal heat generation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09959-3.

    Article  Google Scholar 

  31. Hussain S, Jamal M, Ahmed SE. Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: the impact of nanoparticles. Int Commun Heat Mass Transf. 2019;108:104310.

    Article  CAS  Google Scholar 

  32. Hussain S, Mehmood K, Sagheer M, Ashraf A. Mixed convective magnetonanofluid flow over a backward facing step and entropy generation using extended Darcy–Brinkman–Forchheimer model. J Therm Anal Calorim. 2019;138:3183–203.

    Article  CAS  Google Scholar 

  33. Turner JS. Double-diffusive phenomena. Annu Rev Fluid Mech. 1974;6:37–56.

    Article  Google Scholar 

  34. Huppert HE, Turner JS. Double-diffusive convection. J Fluid Mech. 1981;106:299–329.

    Article  Google Scholar 

  35. Schmitt RW. Double diffusion in oceanography. Annu Rev Fluid Mech. 1994;26:255–85.

    Article  Google Scholar 

  36. Nield DA, Kuznetsov AV. The onset of double-diffusive convection in a nanofluid layer. Int J Heat Fluid Flow. 2011;32:771–6.

    Article  CAS  Google Scholar 

  37. Kuznetsov AV, Nield DA. Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci. 2011;50:712–7.

    Article  Google Scholar 

  38. Chen S, Liu H, Zheng CG. Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int J Heat Mass Transf. 2012;55:4862–70.

    Article  Google Scholar 

  39. Parvin S, Nasrin R, Alim MA, Hossain NF. Double diffusive natural convection in a partially heated enclosure using nanofluid. Heat Transf Asian Res. 2012;41:484–97.

    Article  Google Scholar 

  40. Arani AA, Kakoli E, Hajialigol N. Double-diffusive natural convection of \(Al_{2}O_{3}\)-water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol. 2014;28:4681–91.

    Article  Google Scholar 

  41. He B, Lua S, Gao D, Chena W, Li X. Lattice Boltzmann simulation of double diffusive natural convection of nanofluids in an enclosure with heat conducting partitions and sinusoidal boundary conditions. Int J Mech Sci. 2019;161–162:48–63.

    Google Scholar 

  42. Wang B, Liu Y, Li L. Nanofluid double diffusive natural convection in a porous cavity under multiple force fields. Numer Heat Transf Part A Appl. 2020;77(4):343–60.

    Article  CAS  Google Scholar 

  43. Esfahani JA, Bordbar V. Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids. J Nanotechnol Eng Med. 2011;2:021002/1-9.

  44. Alim MA, Nasrin R. Modeling of double diffusive buoyant flow in a solar collector with water-CuO nanofluid. Heat Transf Asian Res. 2013;42:212–29.

    Article  Google Scholar 

  45. Dastmalchi M, Sheikhzadeh GA, Arani AAA. Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int J Therm Sci. 2015;95:88–98.

    Article  CAS  Google Scholar 

  46. Aly AM, Raizah ZA. Double-diffusive natural convection in an enclosure filled with nanofluid using ISPH method. Alexandria Eng J. 2016;55(4):3037–52.

    Article  Google Scholar 

  47. Safa R, Goharrizi AS, Jafari S, Javaran EJ. Investigation of double-diffusive mixed convection effect on the particles dissolution in the shear flow using coupled SPM-LBM. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10019-z.

    Article  Google Scholar 

  48. Moolya S, Satheesh A. Role of magnetic field and cavity inclination on double diffusive mixed convection in rectangular enclosed domain. Int Commun Heat Mass Transf. 2020;118:104814.

    Article  Google Scholar 

  49. Hussain S, Jamal M, Geridonmez BP. Impact of power law fluid and magnetic field on double diffusive mixed convection in staggered porous cavity considering Dufour and Soret effects. Int Commun Heat Mass Transf. 2021;121:105075.

    Article  Google Scholar 

  50. Arani AAA, Ababaei A, Sheikhzadeh GA, Aghaei A. Numerical simulation of double-diffusive mixed convection in an enclosure filled with nanofluid using Bejan’s heatlines and masslines. Alex Eng J. 2018;57(3):1287–300.

    Article  Google Scholar 

  51. Hussain S, Oztop HF, Jamal M, Handeh NA. Double diffusive nanofluid flow in a duct with cavity heated from below. Int J Mech Sci. 2017;131:535–45.

    Article  Google Scholar 

  52. Hussain S, Mehmood K, Sagheer M, Yamin M. Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure. Int J Heat Mass Transf. 2018;122:1283–97.

    Article  CAS  Google Scholar 

  53. Nath R, Krishnan M. Numerical study of double diffusive mixed convection in a backward facing step channel filled with Cu-water nanofluid. Int J Mech Sci. 2019;153–154:48–63.

    Article  Google Scholar 

  54. Hussain S, Jamal M, Geridonmez BP. Impact of fins and inclined magnetic field in double lid-driven cavity with Cu-water nanofluid. Int J Therm Sci. 2021;161:106707.

    Article  CAS  Google Scholar 

  55. Alleborn N, Raszillier H, Durst F. Lid-driven cavity with heat and mass transport. Int J Heat Mass Transf. 1999;42:833–53.

    Article  CAS  Google Scholar 

  56. Bhuvaneswari M, Sivasankaran S, Kim YJ. Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid driven cavity. Numer Heat Transf Part A. 2011;59(7):543–60.

    Article  Google Scholar 

  57. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.

    Article  CAS  Google Scholar 

  58. Sheremet MA, Pop I, Ishak A. Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transp Porous Media. 2015;109(1):131–45.

    Article  CAS  Google Scholar 

  59. Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88(9):93116.

    Article  CAS  Google Scholar 

  60. Ghasemi B, Aminossadati SM. Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int J Therm Sci. 2010;49:931–40.

    Article  CAS  Google Scholar 

  61. Benos L, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Transf. 2019;130:862–73.

    Article  CAS  Google Scholar 

  62. Pandit SK, Chattopadhyay A. A robust higher order compact scheme for solving general second order partial differential equation with derivative source terms on nonuniform curvilinear meshes. Comput Math Appl. 2017;74(6):1414–34.

    Article  Google Scholar 

  63. Pandit SK, Kalita JC, Dalal DC. A fourth-order accurate compact scheme for the solution of steady Navier–Stokes equations on non-uniform grids. Comput Fluids. 2008;37(2):121–34.

    Article  CAS  Google Scholar 

  64. Pandit SK, Chattopadhyay A, Oztop HF. A fourth order compact scheme for heat transfer problem in porous media. Comput Math Appl. 206;71(3):805-32.

  65. Lele SK. Compact finite difference schemes with spectral like resolution. J Comput Phys. 1992;103:16–42.

    Article  Google Scholar 

  66. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheatsinks. Int J Heat Mass Transf. 2005;48:2652–61.

    Article  CAS  Google Scholar 

  67. Li J. Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS. Ph.D. thesis, NC State University, Raleigh, NC, USA (2008).

  68. Maxwell-Garnett JC. Colours in metal glasses and in metallic films. Philos Trans R Soc A. 1904;203:385–420.

    Google Scholar 

  69. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  70. Veilleux J, Coulombe S. A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. J Appl Phys. 2010;108:104316.

    Article  CAS  Google Scholar 

  71. Kim J, Choi CK, Kang YT, Kim MG. Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanosclae Microscale Thermophys Eng. 2006;10:29–39.

    Article  CAS  Google Scholar 

  72. Singh P, Kumar M. Mass transfer in MHD flow of alumina water nanofluid over a flat plate under slip conditions. Alexandria Eng J. 2015;54:383–7.

    Article  Google Scholar 

  73. Van Der Vorst H. BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J Sci Comput. 1992;13:631–44.

    Article  Google Scholar 

  74. Al-Amiri AM, Khanafer K, Pop I. Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. Int J Therm Sci. 2007;46:662–71.

    Article  CAS  Google Scholar 

  75. Bettaibi S, Kuznik F, Sediki E. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Physica A Stat Mech Appl. 2016;444:311–26.

    Article  Google Scholar 

  76. Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B Fluids. 2010;29:472–82.

    Article  Google Scholar 

  77. Al-Amiri AM, Khanafer K, Bull J, Pop I. Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf. 2007;50(9–10):1771–80.

    Article  Google Scholar 

  78. Calcagni B, Marsili F, Paroncini M. Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng. 2005;25(16):2522–31.

    Article  CAS  Google Scholar 

  79. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Pandit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansda, S., Pandit, S.K. & Sheu, T.W.H. Thermosolutal discharge of double diffusion mixed convection flow with Brownian motion of nanoparticles in a wavy chamber. J Therm Anal Calorim 147, 7007–7029 (2022). https://doi.org/10.1007/s10973-021-10971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10971-4

Keywords

Navigation