Skip to main content
Log in

An artificial intelligence-based prediction way to describe flowing a Newtonian liquid/gas on a permeable flat surface

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this study is to utilize artificial neural network (ANN), as one of the most powerful artificial intelligence methods, for modeling stream function (f) and the dimensionless temperature (θ) for the considered problem. The problem that is investigated here is flowing a Newtonian fluid on a permeable flat surface. The Homotopy Perturbation Method (HPM) recently developed by the authors for this problem is utilized to provide enough number of the input data. The best ANN is found for each of the two indicated outputs. Then, the best ANN model for each output is utilized to investigate the impact of changing the similarity variable in the range 0.0 to 10.0 on prediction error of the two mentioned outputs. Four values for porosity, which are 0.2, 0.5, 0.8, and 1.0, are investigated. According to the findings, an almost quadratic relation for changes prediction error of f as a function of η is seen, whereas after a sudden drop, the error in prediction of θ declines linearly. Moreover, for the whole range, and for both outputs, the error remains in an acceptable range, which verifies the good accuracy of ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

b :

Bias of a neuron in ANN

f :

Stream function

U :

Free stream velocity (m s1)

w :

Mass of a neuron in ANN

x :

Dimension alongside x axis

y :

Dimension alongside y axis

θ :

Dimensionless temperature

ν :

Kinematic viscosity (m2 s1)

ANN:

Artificial neural network

HPM:

Homotopy Perturbation Method

References

  1. Jurčević M, Nižetić S, Arıcı M, Hoang AT, Giama E, Papadopoulos A. Thermal constant analysis of phase change nanocomposites and discussion on selection strategies with respect to economic constraints. Sustainable Energy Technol Assess. 2021;43:100957. https://doi.org/10.1016/j.seta.2020.100957.

    Article  Google Scholar 

  2. Shahsavar A, Jha P, Arıcı M, Estellé P. Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system. Renew Energy. 2021;170:410–25. https://doi.org/10.1016/j.renene.2021.01.117.

    Article  CAS  Google Scholar 

  3. Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Convers Manage. 2013;75:282–91. https://doi.org/10.1016/j.enconman.2013.06.025.

    Article  Google Scholar 

  4. Ahmadi MH, Hosseinzade H, Sayyaadi H, Mohammadi AH, Kimiaghalam F. Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss. Renew Energy. 2013;60:313–22. https://doi.org/10.1016/j.renene.2013.05.005.

    Article  Google Scholar 

  5. Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish—stirling engine by implementing evolutionary algorithm. Energy Convers Manage. 2013;73:370–80. https://doi.org/10.1016/j.enconman.2013.05.031.

    Article  Google Scholar 

  6. Yağlı H, Koç Y, Kalay H. Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power. Sustain Energy Technol Assess. 2021;44:100985. https://doi.org/10.1016/j.seta.2020.100985.

    Article  Google Scholar 

  7. Sohani A, Hoseinzadeh S, Berenjkar K. Experimental analysis of innovative designs for solar still desalination technologies; an in-depth technical and economic assessment. J Energy Storage. 2021;33:101862. https://doi.org/10.1016/j.est.2020.101862.

    Article  Google Scholar 

  8. Sedaghatizadeh N, Arjomandi M, Kelso R, Cazzolato B, Ghayesh MH. The effect of the boundary layer on the wake of a horizontal axis wind turbine. Energy. 2019;182:1202–21. https://doi.org/10.1016/j.energy.2019.06.066.

    Article  Google Scholar 

  9. Sohani A, Sayyaadi H. Employing genetic programming to find the best correlation to predict temperature of solar photovoltaic panels. Energy Convers Manage. 2020;224:113291. https://doi.org/10.1016/j.enconman.2020.113291.

    Article  Google Scholar 

  10. Köse Ö, Koç Y, Yağlı H. Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy Convers Manage. 2021;227:113604. https://doi.org/10.1016/j.enconman.2020.113604.

    Article  Google Scholar 

  11. Soudagar MEM, Afzal A, Safaei MR, Manokar AM, El-Seesy AI, Mujtaba MA, et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J Thermal Anal Calorim. 2020;2020:1–18.

    Google Scholar 

  12. Maleki H, Safaei MR, Alrashed AAAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135(3):1655–66.

    Article  CAS  Google Scholar 

  13. Goodarzi M, Tlili I, Moria H, Cardoso EM, Alkanhal TA, Anqi AE, et al. Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk. Powder Technol. 2021;377:10–9.

    Article  CAS  Google Scholar 

  14. Li Z, Sarafraz MM, Mazinani A, Moria H, Tlili I, Alkanhal TA, et al. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Convers Manage. 2020;222:113230. https://doi.org/10.1016/j.enconman.2020.113230.

    Article  CAS  Google Scholar 

  15. Ghalambaz M, Mehryan SAM, Mashoofi N, Hajjar A, Chamkha AJ, Sheremet M, et al. Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Adv Powder Technol. 2020;31(11):4470–81. https://doi.org/10.1016/j.apt.2020.09.022.

    Article  CAS  Google Scholar 

  16. Ghalambaz M, Mehryan SAM, Zahmatkesh I, Chamkha A. Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int J Therm Sci. 2020;157:106503. https://doi.org/10.1016/j.ijthermalsci.2020.106503.

    Article  Google Scholar 

  17. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140(3):1121–45.

    Article  CAS  Google Scholar 

  18. Alsabery AI, Ghalambaz M, Armaghani T, Chamkha A, Hashim I, Saffari PM. Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept. Nanomaterials. 2020;10(6):1138.

    Article  CAS  Google Scholar 

  19. Arcondoulis E, Liu Y, Geyer TF, Sedaghatizadeh N, Arjomandi M. Aeroacoustic performance of cylinders with a circumferential varying porous coating. AIAA AVIATION 2020 FORUM. AIAA AVIATION Forum: American Institute of Aeronautics and Astronautics. 2020;AIAA:2020–527. https://doi.org/10.2514/6.2020-2527.

  20. Maleki H, Alsarraf J, Moghanizadeh A, Hajabdollahi H, Safaei MR. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J Central South Univ. 2019;26(5):1099–115.

    Article  CAS  Google Scholar 

  21. Mehryan SAM, Ghalambaz M, Chamkha AJ, Izadi M. Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: a local thermal non-equilibrium model. Powder Technol. 2020;367:443–55. https://doi.org/10.1016/j.powtec.2020.04.005.

    Article  CAS  Google Scholar 

  22. Yu P, Pengbo M, Hongkun C, Dong L, Arıcı M. Characterization investigation on pore-resistance relationship of oil contaminants in soil porous structure. J Petrol Sci Eng. 2020;191:107208. https://doi.org/10.1016/j.petrol.2020.107208.

    Article  CAS  Google Scholar 

  23. Hooman K, Tamayol A, Dahari M, Safaei MR, Togun H, Sadri R. A theoretical model to predict gas permeability for slip flow through a porous medium. Appl Therm Eng. 2014;70(1):71–6. https://doi.org/10.1016/j.applthermaleng.2014.04.071.

    Article  Google Scholar 

  24. Mehryan SAM, Ayoubi-Ayoubloo K, Shahabadi M, Ghalambaz M, Talebizadehsardari P, Chamkha A. Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach. Transp Porous Media. 2020;132(3):657–81. https://doi.org/10.1007/s11242-020-01407-y.

    Article  CAS  Google Scholar 

  25. Ghasemi A, Dardel M, Ghasemi MH. Collective effect of fluid’s Coriolis force and nanoscale’s parameter on instability pattern and vibration characteristic of fluid-conveying carbon nanotubes. J Pressure Vessel Technol. 2015;137(3):4972–92.

    Article  Google Scholar 

  26. Ghasemi A, Dardel M, Ghasemi MH, Barzegari MM. Analytical analysis of buckling and post-buckling of fluid conveying multi-walled carbon nanotubes. Appl Math Model. 2013;37(7):4972–92.

    Article  Google Scholar 

  27. Gholamalizadeh E, Pahlevanzadeh F, Ghani K, Karimipour A, Nguyen TK, Safaei MR. Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions. Int J Numer Methods Heat Fluid Flow. 2019;30:2329–49.

    Article  Google Scholar 

  28. Ayoubi Ayoubloo K, Ghalambaz M, Armaghani T, Noghrehabadi A, Chamkha AJ. Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. Int J Numer Methods Heat Fluid Flow. 2019;30(3):1096–114. https://doi.org/10.1108/HFF-06-2019-0464.

  29. Sarafraz MM, Safaei MR, Goodarzi M, Arjomandi M. Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. Int J Hydrogen Energy. 2019;44(36):19628–39.

    Article  CAS  Google Scholar 

  30. Ghalambaz M, Tahmasebi A, Chamkha AJ, Wen D. Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: analysis of the element location. Int J Heat Mass Transf. 2019;138:941–60. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.073.

    Article  Google Scholar 

  31. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NWBM. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Physica A. 2019;521:138–45. https://doi.org/10.1016/j.physa.2019.01.051.

    Article  CAS  Google Scholar 

  32. Karimipour A, Bagherzadeh SA, Goodarzi M, Alnaqi AA, Bahiraei M, Safaei MR, et al. Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN. Int J Heat Mass Transf. 2018;127:1169–79. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.112.

    Article  CAS  Google Scholar 

  33. Santos JE, Xu D, Jo H, Landry CJ, Prodanović M, Pyrcz MJ. PoreFlow-Net: a 3D convolutional neural network to predict fluid flow through porous media. Adv Water Resour. 2020;138:103539. https://doi.org/10.1016/j.advwatres.2020.103539.

    Article  Google Scholar 

  34. Mohebbi Najm Abad J, Alizadeh R, Fattahi A, Doranehgard MH, Alhajri E, Karimi N. Analysis of transport processes in a reacting flow of hybrid nanofluid around a bluff-body embedded in porous media using artificial neural network and particle swarm optimization. J Mol Liquids. 2020;313:113492. https://doi.org/10.1016/j.molliq.2020.113492.

    Article  CAS  Google Scholar 

  35. Ebadi M, Zabihifar SH, Bezyan Y, Koroteev D. A nonlinear solver based on an adaptive neural network, introduction and application to porous media flow. J Nat Gas Sci Eng. 2021;87:103749. https://doi.org/10.1016/j.jngse.2020.103749.

    Article  Google Scholar 

  36. Alizadeh R, Mohebbi Najm Abad J, Fattahi A, Alhajri E, Karimi N. Application of machine learning to investigation of heat and mass transfer over a cylinder surrounded by porous media—the radial basic function network. J Energy Resour Technol. 2020. https://doi.org/10.1115/1.4047402.

    Article  Google Scholar 

  37. Shams R, Masihi M, Boozarjomehry RB, Blunt MJ. Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media. J Petrol Sci Eng. 2020;186:106794. https://doi.org/10.1016/j.petrol.2019.106794.

    Article  CAS  Google Scholar 

  38. Babakhani P, Bridge J, Ra D, Phenrat T. Parameterization and prediction of nanoparticle transport in porous media: a reanalysis using artificial neural network. Water Resour Res. 2017;53(6):4564–85.

    Article  Google Scholar 

  39. Ahamad NA, Athani A, Badruddin IA, editors. Heat transfer prediction in a square porous medium using artificial neural network. 2018; AIP Publishing LLC

  40. Athani A, Ahamad NA, Badruddin IA, editors. Application of artificial neural network for heat transfer in porous cone. 2018; AIP Publishing LLC

  41. Ghanbari Ashrafi T, Hoseinzadeh S, Sohani A, Shahverdian MH. Applying homotopy perturbation method to provide an analytical solution for Newtonian fluid flow on a porous flat plate. Math Methods Appl Sci. 2021. https://doi.org/10.1002/mma.7238.

    Article  Google Scholar 

  42. He J-H. Homotopy perturbation technique. Comput Methods Appl Mech Eng. 1999;178(3):257–62. https://doi.org/10.1016/S0045-7825(99)00018-3.

    Article  Google Scholar 

  43. He JH, El-Dib YO. The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer Methods Partial Differ Equ. 2020. https://doi.org/10.1002/num.22609.

    Article  Google Scholar 

  44. Anjum N, He J-H. Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly. Int J Mod Phys B. 2020;34(32):2050313.

    Article  Google Scholar 

  45. He J-H, El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. J Math Chem. 2020;58(10):2245–53.

    Article  CAS  Google Scholar 

  46. Sohani A, Sayyaadi H, Hasani Balyani H, Hoseinpoori S. A novel approach using predictive models for performance analysis of desiccant enhanced evaporative cooling systems. Appl Therm Eng. 2016;107:227–52. https://doi.org/10.1016/j.applthermaleng.2016.06.121.

    Article  Google Scholar 

  47. Sohani A, Zabihigivi M, Moradi MH, Sayyaadi H, Hasani BH. A comprehensive performance investigation of cellulose evaporative cooling pad systems using predictive approaches. Appl Therm Eng. 2017;110:1589–608. https://doi.org/10.1016/j.applthermaleng.2016.08.216.

    Article  CAS  Google Scholar 

  48. Sohani A, Sayyaadi H, Hoseinpoori S. Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network. Int J Refrig. 2016;69:186–204. https://doi.org/10.1016/j.ijrefrig.2016.05.011.

    Article  Google Scholar 

  49. Sohani A, Shahverdian MH, Sayyaadi H, Garcia DA. Impact of absolute and relative humidity on the performance of mono and poly crystalline silicon photovoltaics; applying artificial neural network. J Clean Prod. 2020;276:123016. https://doi.org/10.1016/j.jclepro.2020.123016.

    Article  CAS  Google Scholar 

  50. Gupta N. Artificial neural network. Network Complex Syst. 2013;3(1):24–8.

    Google Scholar 

  51. Livingstone DJ. Artificial neural networks: methods and applications. 2008; Springer

  52. Hassoun MH. Fundamentals of artificial neural networks. 1995; MIT press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Hoseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, S., Sohani, A. & Ashrafi, T.G. An artificial intelligence-based prediction way to describe flowing a Newtonian liquid/gas on a permeable flat surface. J Therm Anal Calorim 147, 4403–4409 (2022). https://doi.org/10.1007/s10973-021-10811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10811-5

Keywords

Navigation