Skip to main content
Log in

A Review of Physics Informed Neural Networks for Multiscale Analysis and Inverse Problems

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the fundamentals of Physics Informed Neural Networks (PINNs) and reviews literature on the methodology and application of PINNs. PINNs are universal approximators that integrates physical laws that can be described by partial differential equations (PDEs) and given data, in the learning process. The formulations of PINNs are first presented in an example of linear elasticity problem. Then, the characteristics of PINNs are compared with that of conventional numerical analysis approach. A review of the literature on PINNs for solving not only forward, but also inverse problems is discussed. In addition, special attention is given to the employment of PINNs in multiscale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  ADS  Google Scholar 

  2. G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5

    Article  Google Scholar 

  3. O. Fuks, H.A. Tchelepi, Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J. Mach. Learn. Model. Comput. 1(1), 19–37 (2020). https://doi.org/10.1615/JMachLearnModelComput.2020033905

    Article  Google Scholar 

  4. T.G. Grossmann, U.J. Komorowska, J. Latz, C.-B. Schönlieb, Can physics-informed neural networks beat the finite element method? arXiv:2302.04107 (2023)

  5. M.-S. Go, J.H. Lim, S. Lee, Physics-informed neural network-based surrogate model for a virtual thermal sensor with real-time simulation. Int. J. Heat Mass Transf. 214, 124392 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124392

    Article  Google Scholar 

  6. M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020). https://doi.org/10.1126/science.aaw4741

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. E. Zhang, M. Dao, G.E. Karniadakis, S. Suresh, Analyses of internal structures and defects in materials using physics-informed neural networks. Sci. Adv. 8(7), 0644 (2022). https://doi.org/10.1126/sciadv.abk0644

    Article  ADS  Google Scholar 

  8. A. Kamali, M. Sarabian, K. Laksari, Elasticity imaging using physics-informed neural networks: spatial discovery of elastic modulus and Poisson’s ratio. Available at SSRN 4203110

  9. L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, Deepxde: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021). https://doi.org/10.1137/19m1274067

    Article  MathSciNet  Google Scholar 

  10. E. Kharazmi, Z. Zhang, G.E.M. Karniadakis, HP-VPINNS: variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 374, 113547 (2021). https://doi.org/10.1016/j.cma.2020.113547

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020). https://doi.org/10.1016/j.cma.2019.112790

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Rao, H. Sun, Y. Liu, Hard encoding of physics for learning spatiotemporal dynamics. arXiv:2105.00557 (2021)

  13. N. Geneva, N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020). https://doi.org/10.1016/j.jcp.2019.109056

    Article  MathSciNet  Google Scholar 

  14. H. Gao, L. Sun, J.-X. Wang, Phygeonet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDES on irregular domain. J. Comput. Phys. 428, 110079 (2021). https://doi.org/10.1016/j.jcp.2020.110079

    Article  MathSciNet  Google Scholar 

  15. N. Wandel, M. Weinmann, M. Neidlin, R. Klein, Spline-PINN: approaching PDES without data using fast, physics-informed hermite-spline CNNS. Proc. AAAI Conf. Artif. Intell. 36(8), 8529–8538 (2022). https://doi.org/10.1609/aaai.v36i8.20830

    Article  Google Scholar 

  16. S.F. Wang, Y.J. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43(5), 3055–3081 (2021). https://doi.org/10.1137/20m1318043. (Xg7ux Times Cited:214 Cited References Count:57)

    Article  MathSciNet  Google Scholar 

  17. L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv:2009.04544 (2020)

  18. P.-H. Chiu, J.C. Wong, C. Ooi, M.H. Dao, Y.-S. Ong, Can-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentiation method. Comput. Methods Appl. Mech. Eng. 395, 114909 (2022). https://doi.org/10.1016/j.cma.2022.114909

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Yuan, Y.-Q. Ni, X.-Y. Deng, S. Hao, A-PINN: auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. J. Comput. Phys. 462, 111260 (2022). https://doi.org/10.1016/j.jcp.2022.111260

    Article  MathSciNet  Google Scholar 

  20. E. Haghighat, A.C. Bekar, E. Madenci, R. Juanes, A nonlocal physics-informed deep learning framework using the peridynamic differential operator. Comput. Methods Appl. Mech. Eng. 385, 114012 (2021). https://doi.org/10.1016/j.cma.2021.114012

    Article  MathSciNet  ADS  Google Scholar 

  21. A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020). https://doi.org/10.1016/j.cma.2020.113028

    Article  MathSciNet  ADS  Google Scholar 

  22. A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural networks (XPINNS): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28, 2002–2041 (2020). https://doi.org/10.4208/cicp.OA-2020-0164

    Article  MathSciNet  Google Scholar 

  23. V. Dwivedi, N. Parashar, B. Srinivasan, Distributed learning machines for solving forward and inverse problems in partial differential equations. Neurocomputing 420, 299–316 (2021). https://doi.org/10.1016/j.neucom.2020.09.006

    Article  Google Scholar 

  24. S. Goswami, A. Bora, Y. Yu, G.E. Karniadakis, in Physics-Informed Deep Neural Operator Networks ed. by T. Rabczuk, K.-J. Bathe (Springer, Cham, 2023), pp. 219–254. https://doi.org/10.1007/978-3-031-36644-4_6

  25. L. Lu, P. Jin, G.E. Karniadakis, Deeponet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv:1910.03193 (2019)

  26. L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021). https://doi.org/10.1038/s42256-021-00302-5

    Article  Google Scholar 

  27. S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed deeponets. Sci. Adv. 7(40), 8605 (2021). https://doi.org/10.1126/sciadv.abi8605

    Article  ADS  Google Scholar 

  28. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential equations. in ICLR 2021: The Ninth International Conference on Learning Representations (2021)

  29. Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, A. Anandkumar, Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794 (2021)

  30. R. Ranade, C. Hill, J. Pathak, Discretizationnet: a machine-learning based solver for Navier–Stokes equations using finite volume discretization. Comput. Methods Appl. Mech. Eng. 378, 113722 (2021). https://doi.org/10.1016/j.cma.2021.113722

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Oldenburg, F. Borowski, A. Öner, K.-P. Schmitz, M. Stiehm, Geometry aware physics informed neural network surrogate for solving Navier–Stokes equation (GAPINN). Adv. Model. Simul. Eng. Sci. 9(1), 8 (2022). https://doi.org/10.1186/s40323-022-00221-z

    Article  Google Scholar 

  32. C. Cheng, G.-T. Zhang, Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water 13(4), 423 (2021)

    Article  Google Scholar 

  33. M. Mahmoudabadbozchelou, G.E. Karniadakis, S. Jamali, NN-PINNS: non-Newtonian physics-informed neural networks for complex fluid modeling. Soft Matter 18(1), 172–185 (2022)

    Article  CAS  ADS  Google Scholar 

  34. M. Mahmoudabadbozchelou, S. Jamali, Rheology-informed neural networks (RHINNS) for forward and inverse metamodelling of complex fluids. Sci. Rep. 11(1), 12015 (2021). https://doi.org/10.1038/s41598-021-91518-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. S. Thakur, M. Raissi, A.M. Ardekani, Viscoelasticnet: a physics informed neural network framework for stress discovery and model selection. arXiv:2209.06972 (2022)

  36. E. Haghighat, D. Amini, R. Juanes, Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training. Comput. Methods Appl. Mech. Eng. 397, 115141 (2022). https://doi.org/10.1016/j.cma.2022.115141

    Article  MathSciNet  ADS  Google Scholar 

  37. M.M. Almajid, M.O. Abu-Al-Saud, Prediction of porous media fluid flow using physics informed neural networks. J. Petrol. Sci. Eng. 208, 109205 (2022). https://doi.org/10.1016/j.petrol.2021.109205

    Article  CAS  Google Scholar 

  38. H. Wessels, C. Weißenfels, P. Wriggers, The neural particle method—an updated Lagrangian physics informed neural network for computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 368, 113127 (2020). https://doi.org/10.1016/j.cma.2020.113127

    Article  MathSciNet  ADS  Google Scholar 

  39. T. Zhang, B. Dey, P. Kakkar, A. Dasgupta, A. Chakraborty, Frequency-compensated PINNS for fluid-dynamic design problems. arXiv:2011.01456 (2020)

  40. E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 379, 113741 (2021). https://doi.org/10.1016/j.cma.2021.113741

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Rao, H. Sun, Y. Liu, Physics-informed deep learning for computational elastodynamics without labeled data. J. Eng. Mech. 147(8), 04021043 (2021). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001947

    Article  Google Scholar 

  42. G.K. Yadav, S. Natarajan, B. Srinivasan, Distributed PINN for linear elasticity—a unified approach for smooth, singular, compressible and incompressible media. Int. J. Comput. Methods 19(08), 2142008 (2022). https://doi.org/10.1142/s0219876221420081

    Article  MathSciNet  Google Scholar 

  43. A. Henkes, H. Wessels, R. Mahnken, Physics informed neural networks for continuum micromechanics. Comput. Methods Appl. Mech. Eng. 393, 114790 (2022). https://doi.org/10.1016/j.cma.2022.114790

    Article  MathSciNet  ADS  Google Scholar 

  44. D.W. Abueidda, S. Koric, R.A. Al-Rub, C.M. Parrott, K.A. James, N.A. Sobh, A deep learning energy method for hyperelasticity and viscoelasticity. Eur. J. Mech. A. Solids 95, 104639 (2022). https://doi.org/10.1016/j.euromechsol.2022.104639

    Article  MathSciNet  ADS  Google Scholar 

  45. J.N. Fuhg, N. Bouklas, The mixed deep energy method for resolving concentration features in finite strain hyperelasticity. J. Comput. Phys. 451, 110839 (2022). https://doi.org/10.1016/j.jcp.2021.110839

    Article  MathSciNet  Google Scholar 

  46. D.W. Abueidda, S. Koric, E. Guleryuz, N.A. Sobh, Enhanced physics-informed neural networks for hyperelasticity. Int. J. Numer. Meth. Eng. 124(7), 1585–1601 (2023). https://doi.org/10.1002/nme.7176

    Article  MathSciNet  Google Scholar 

  47. S. Rezaei, A. Harandi, A. Moeineddin, B.-X. Xu, S. Reese, A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method. Comput. Methods Appl. Mech. Eng. 401, 115616 (2022). https://doi.org/10.1016/j.cma.2022.115616

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Bai, T. Rabczuk, A. Gupta, L. Alzubaidi, Y. Gu, A physics-informed neural network technique based on a modified loss function for computational 2d and 3d solid mechanics. Comput. Mech. (2022). https://doi.org/10.1007/s00466-022-02252-0

    Article  Google Scholar 

  49. C.A. Yan, R. Vescovini, L. Dozio, A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures. Comput. Struct. 265, 106761 (2022). https://doi.org/10.1016/j.compstruc.2022.106761

    Article  Google Scholar 

  50. G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  51. S. Goswami, M. Yin, Y. Yu, G.E. Karniadakis, A physics-informed variational deeponet for predicting crack path in quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 391, 114587 (2022). https://doi.org/10.1016/j.cma.2022.114587

    Article  MathSciNet  ADS  Google Scholar 

  52. Z. Zhang, G.X. Gu, Physics-informed deep learning for digital materials. Theor. Appl. Mech. Lett. 11(1), 100220 (2021). https://doi.org/10.1016/j.taml.2021.100220

    Article  Google Scholar 

  53. L.H. Song, C. Wang, J.S. Fan, H.M. Lu, Elastic structural analysis based on graph neural network without labeled data. Comput.-Aid. Civil Infrastruct. Eng. 38(10), 1307–1323 (2023). https://doi.org/10.1111/mice.12944. (I4gv2 Times Cited:1 Cited References Count:60)

    Article  Google Scholar 

  54. R. Arora, Physrnet: physics informed super-resolution network for application in computational solid mechanics. in 2022 IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S), 13–18. (2022). https://doi.org/10.1109/AI4S56813.2022.00008

  55. C.M. Hamel, K.N. Long, S.L. Kramer, Calibrating constitutive models with full-field data via physics informed neural networks. arXiv:2203.16577 (2022)

  56. T. Kadeethum, T.M. Jørgensen, H.M. Nick, Physics-informed neural networks for solving inverse problems of nonlinear biot’s equations: batch training. in 54th US Rock Mechanics/Geomechanics Symposium. OnePetro

  57. Z. Mao, A.D. Jagtap, G.E. Karniadakis, Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020). https://doi.org/10.1016/j.cma.2019.112789

    Article  MathSciNet  ADS  Google Scholar 

  58. A.M. Tartakovsky, C.O. Marrero, P. Perdikaris, G.D. Tartakovsky, D. Barajas-Solano, Learning parameters and constitutive relationships with physics informed deep neural networks. arXiv:1808.03398 (2018)

  59. Y. Deng, C. Chen, Q. Wang, X. Li, Z. Fan, Y. Li, Modeling a typical non-uniform deformation of materials using physics-informed deep learning: applications to forward and inverse problems. Appl. Sci. 13(7), 4539 (2023)

    Article  CAS  Google Scholar 

  60. K. Shukla, A.D. Jagtap, J.L. Blackshire, D. Sparkman, G.E. Karniadakis, A physics-informed neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound data: a promising approach for solving inverse problems. IEEE Signal Process. Mag. 39(1), 68–77 (2022). https://doi.org/10.1109/MSP.2021.3118904

    Article  Google Scholar 

  61. E. Zhang, M. Yin, G.E. Karniadakis, Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging. arXiv:2009.04525 (2020)

  62. Y. Wei, Q. Serra, G. Lubineau, E. Florentin, Coupling physics-informed neural networks and constitutive relation error concept to solve a parameter identification problem. Comput. Struct. 283, 107054 (2023). https://doi.org/10.1016/j.compstruc.2023.107054

    Article  Google Scholar 

  63. C.-T. Chen, G.X. Gu, Physics-informed deep-learning for elasticity: forward, inverse, and mixed problems. Adv. Sci. (2023). https://doi.org/10.1002/advs.202300439

    Article  Google Scholar 

  64. S. Mowlavi, K. Kamrin, Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries. arXiv:2303.09280 (2023)

  65. Z. Fang, J. Zhan, Deep physical informed neural networks for metamaterial design. IEEE Access 8, 24506–24513 (2020). https://doi.org/10.1109/ACCESS.2019.2963375

    Article  Google Scholar 

  66. J. Zehnder, Y. Li, S. Coros, B. Thomaszewski, Ntopo: mesh-free topology optimization using implicit neural representations. Adv. Neural. Inf. Process. Syst. 34, 10368–10381 (2021)

    Google Scholar 

  67. A. Joglekar, H. Chen, L.B. Kara, DMF-TONN: direct mesh-free topology optimization using neural networks. arXiv:2305.04107 (2023)

  68. L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S.G. Johnson, Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput. 43(6), 1105–1132 (2021). https://doi.org/10.1137/21m1397908

    Article  MathSciNet  Google Scholar 

  69. L. Lu, R. Pestourie, S.G. Johnson, G. Romano, Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport. Phys. Rev. Res. 4(2), 023210 (2022). https://doi.org/10.1103/PhysRevResearch.4.023210. (PRRESEARCH)

    Article  CAS  Google Scholar 

  70. K. Wu, X.-B. Yan, S. Jin, Z. Ma, Capturing the diffusive behavior of the multiscale linear transport equations by asymptotic-preserving convolutional deeponets. Comput. Methods Appl. Mech. Eng. 418, 116531 (2024). https://doi.org/10.1016/j.cma.2023.116531

    Article  MathSciNet  ADS  Google Scholar 

  71. S. Cai, Z. Wang, L. Lu, T.A. Zaki, G.E. Karniadakis, Deepm &mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J. Comput. Phys. 436, 110296 (2021). https://doi.org/10.1016/j.jcp.2021.110296

    Article  MathSciNet  Google Scholar 

  72. Z. Mao, L. Lu, O. Marxen, T.A. Zaki, G.E. Karniadakis, Deepm &mnet for hypersonics: predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators. J. Comput. Phys. 447, 110698 (2021). https://doi.org/10.1016/j.jcp.2021.110698

    Article  MathSciNet  CAS  Google Scholar 

  73. C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, G.E. Karniadakis, Operator learning for predicting multiscale bubble growth dynamics. J. Chem. Phys. (2021). https://doi.org/10.1063/5.0041203

    Article  PubMed  PubMed Central  Google Scholar 

  74. L. Liu, W. Cai, Multiscale deeponet for nonlinear operators in oscillatory function spaces for building seismic wave responses. arXiv:2111.04860 (2021)

  75. W.T. Leung, G. Lin, Z. Zhang, Nh-pinn: neural homogenization-based physics-informed neural network for multiscale problems. J. Comput. Phys. 470, 111539 (2022). https://doi.org/10.1016/j.jcp.2022.111539

    Article  MathSciNet  Google Scholar 

  76. J. Han, Y. Lee, A neural network approach for homogenization of multiscale problems. Multiscale Model. Simul. 21(2), 716–734 (2023). https://doi.org/10.1137/22m1500903

    Article  MathSciNet  Google Scholar 

  77. Z. Zhang, C. Moya, W.T. Leung, G. Lin, H. Schaeffer, Bayesian deep operator learning for homogenized to fine-scale maps for multiscale PDE. arXiv:2308.14188 (2023)

  78. M. Yin, E. Zhang, Y. Yu, G.E. Karniadakis, Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems. Comput. Methods Appl. Mech. Eng. 402, 115027 (2022). https://doi.org/10.1016/j.cma.2022.115027

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  79. S.E. Ahmed, P. Stinis, A multifidelity deep operator network approach to closure for multiscale systems. Comput. Methods Appl. Mech. Eng. 414, 116161 (2023). https://doi.org/10.1016/j.cma.2023.116161

    Article  MathSciNet  ADS  Google Scholar 

  80. C. Lin, M. Maxey, Z. Li, G.E. Karniadakis, A seamless multiscale operator neural network for inferring bubble dynamics. J. Fluid Mech. 929, 18 (2021). https://doi.org/10.1017/jfm.2021.866

    Article  MathSciNet  ADS  Google Scholar 

  81. R. Wang, K. Kashinath, M. Mustafa, A. Albert, R. Yu, Towards physics-informed deep learning for turbulent flow prediction. Assoc. Comput. Mach. (2020). https://doi.org/10.1145/3394486.3403198

    Article  Google Scholar 

  82. E.J. Hall, S. Taverniers, M.A. Katsoulakis, D.M. Tartakovsky, Ginns: graph-informed neural networks for multiscale physics. J. Comput. Phys. 433, 110192 (2021). https://doi.org/10.1016/j.jcp.2021.110192

    Article  MathSciNet  Google Scholar 

  83. J. Wu, J. Jiang, Q. Chen, G. Chatzigeorgiou, F. Meraghni, Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity. Int. J. Solids Struct. 284, 112521 (2023). https://doi.org/10.1016/j.ijsolstr.2023.112521

    Article  Google Scholar 

  84. Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019). https://doi.org/10.1016/j.jcp.2019.05.024

    Article  MathSciNet  ADS  Google Scholar 

  85. Q. Lou, X. Meng, G.E. Karniadakis, Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-Bgk formulation. J. Comput. Phys. 447, 110676 (2021). https://doi.org/10.1016/j.jcp.2021.110676

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2023R1A2C2003758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, J. A Review of Physics Informed Neural Networks for Multiscale Analysis and Inverse Problems. Multiscale Sci. Eng. (2024). https://doi.org/10.1007/s42493-024-00106-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42493-024-00106-w

Keywords

Navigation