Skip to main content
Log in

Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Entropy analysis is closely scrutinized for unsteady mixed convection in magneto-hybrid nanofluid (Cu–Fe\(_3\)O\(_4\)–water) flow over an inverted cone surrounded by a porous medium. The mathematical model comprises nonlinear, coupled partial differential equations. The numerical solutions of constitutive equations assisted by related initial boundary conditions are obtained by an effective finite difference method. The specified ranges for active parameters are: \(0\le \varphi _\mathrm{hnf}\le 0.04\), \(0\le M\le 5\), \(0.5\le K\le 3.5\), \(0.6\le \hbox {Gr}\le 1\) and \(0.1\le \hbox {Br}\Omega ^{-1} \le 0.4\). The impact of various parameters arising in the constitutive flow model on the virtual flow parameters is analyzed carefully, and the outcomes are illustrated graphically. Also, steady-state entropy production and Bejan lines are plotted for various active parameters. In addition, the physical quantities, i.e., heat transfer and momentum coefficient, are scrutinized for various parameters and the outcomes are displayed in the tabulated form. It is witnessed that heat transfer rates improved incredibly with growing estimates of hybrid nanoparticles volume fraction. The Nusselt number enhancement of Cu–Fe\(_3\)O\(_4\)–water hybrid nanofluid are 0.53%, 0.76%, 0.95% and 1.1% corresponding to volume concentration of 1%:4% with a difference of 1%, respectively. The theoretical measurement of skin friction showed a maximum enhancement of 0.25% at a volume concentration of 1% compared with Fe\(_3\)O\(_4\)–water nanofluid. Moreover, the momentum and heat transport coefficients are compared with those of natural convection and the result showed that heat transfer coefficient attains higher rates in mixed convectional flow compared with natural convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

(UV):

Velocity components in (xy) direction

(xy):

Cartesian coordinates

B :

Magnetic field

Be:

Bejan number

Br:

Brinkman number

\(C_\mathrm{p}\) :

Specific heat capacity

g :

Gravitational acceleration

Gr:

Thermal Grashof number

K :

Dimensionless porosity parameter

k :

Thermal conductivity

\(k_{0}\) :

Permeability of porous medium

L :

Reference length

M :

Dimensionless magnetic parameter

\(\hbox {Nu}_\mathrm{x}\) :

Local Nusselt number

q :

Heat flux

r :

Radius of the cone

\(S_{0}\) :

Characteristic entropy generation

\(S_\mathrm{GEN}\) :

Dimensionless entropy generation

\(S_\mathrm{gen}\) :

Volumetric entropy generation

T :

Temperature

t :

Time

Pr:

Prandtl number

\(\alpha\) :

Half angle of the cone

\(\beta\) :

Volumetric thermal expansion

\(\Delta\) :

Grid/step size

\(\mu\) :

Dynamic viscosity

\(\nabla\) :

Gradient operator

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density

\(\sigma\) :

Electrical conductivity

\(\tau _\mathrm{x}\) :

Local skin friction

\(\varphi\) :

Nanoparticles volume fraction

\(\hbox {Br}\Omega ^{-1}\) :

Group parameter

*:

Non-dimensional

f:

Base fluid

hnf:

Hybrid nanofluid

i:

Grid point in the x direction

j:

Grid point in the y direction

k:

Time level

nf:

Nanofluid

s:

Nanoparticles

w:

Wall

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Tech. Rep.; Argonne National Lab., IL (United States); 1995. https://www.osti.gov/biblio/196525.

  2. Siavashi M, Joibary SMM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2019;135(2):1595–610. https://doi.org/10.1007/s10973-018-7829-z.

    Article  CAS  Google Scholar 

  3. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and Cu–H\(_2\)O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrogen Energy. 2019;44(30):15933–48. https://doi.org/10.1016/j.ijhydene.2018.12.176.

    Article  CAS  Google Scholar 

  4. Khanafer K, Vafai K. A review on the applications of nanofluids in solar energy field. Renew Energy. 2018;123:398–406. https://doi.org/10.1016/j.renene.2018.01.097.

    Article  CAS  Google Scholar 

  5. Basha HT, Sivaraj R, Reddy AS, Chamkha A. SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation-solar energy application. Eur Phys J Spec Top. 2019a;228(12):2531–51. https://doi.org/10.1140/epjst/e2019-900048-x.

    Article  CAS  Google Scholar 

  6. Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2019;135(3):1629–41. https://doi.org/10.1007/s10973-018-7517-z.

    Article  CAS  Google Scholar 

  7. Reddy PS, Sreedevi P, Chamkha AJ. MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 2017;307:46–55. https://doi.org/10.1016/j.powtec.2016.11.017.

    Article  CAS  Google Scholar 

  8. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019a;135(3):1643–54. https://doi.org/10.1007/s10973-018-7559-2.

    Article  CAS  Google Scholar 

  9. Reddy PS, Chamkha AJ. Soret and Dufour effects on MHD convective flow of Al\(_2\)O\(_3\)-water and TiO\(_2\)-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv Powder Technol. 2016;27(4):1207–18. https://doi.org/10.1016/j.apt.2016.04.005.

    Article  CAS  Google Scholar 

  10. Jabbari F, Rajabpour A, Saedodin S. Viscosity of carbon nanotube/water nanofluid. J Therm Anal Calorim. 2019;135(3):1787–96. https://doi.org/10.1007/s10973-018-7458-6.

    Article  CAS  Google Scholar 

  11. Ghalambaz M, Behseresht A, Behseresht J, Chamkha A. Effects of nanoparticles diameter and concentration on natural convection of the Al\(_2\)O\(_3\)-water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol. 2015;26(1):224–35. https://doi.org/10.1016/j.apt.2014.10.001.

    Article  CAS  Google Scholar 

  12. Dogonchi A, Chamkha AJ, Hashemi-Tilehnoee M, Seyyedi S, Ganji D, et al. Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source. J Cent South Univ. 2019a;26(5):1161–71. https://doi.org/10.1007/s11771-019-4078-7.

    Article  CAS  Google Scholar 

  13. Chamkha A, Rashad A, EL-Zahar E, EL-Mky HA. Analytical and numerical investigation of Fe\(_3\)O\(_4\)-water nanofluid flow over a moveable plane in a parallel stream with high suction. Energies. 2019;12(1):198. https://doi.org/10.3390/en12010198.

    Article  CAS  Google Scholar 

  14. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61. https://doi.org/10.1007/s10973-018-7335-3.

    Article  CAS  Google Scholar 

  15. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135(3):1611–5. https://doi.org/10.1007/s10973-018-7718-5.

    Article  CAS  Google Scholar 

  16. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019a;137(1):267–87. https://doi.org/10.1007/s11242-018-1166-3.

    Article  CAS  Google Scholar 

  17. Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019b;135(3):1655–66. https://doi.org/10.1007/s10973-018-7277-9.

    Article  CAS  Google Scholar 

  18. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. In: AIP Conference Proceedings; AIP Publishing; 2016;1724:020048. https://doi.org/10.1063/1.4945168.

  19. Esfe MH, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT-SiO\(_2\) (30: 70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2018a;131(2):1437–47. https://doi.org/10.1007/s10973-017-6680-y.

    Article  CAS  Google Scholar 

  20. Moghadassi A, Ghomi E, Parvizian F. A numerical study of water based Al\(_2\)O\(_3\) and Al\(_2\)O\(_3\)–Cu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci. 2015;92:50–7. https://doi.org/10.1016/j.ijthermalsci.2015.01.025.

    Article  CAS  Google Scholar 

  21. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT-Fe\(_3\)O\(_4\)/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135(6):3029–42. https://doi.org/10.1007/s10973-018-7483-5.

    Article  CAS  Google Scholar 

  22. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe\(_3\)O\(_4\)-Ag/EG hybrid nanofluid: an experimental study. Exp Thermal Fluid Sci. 2016;77:38–44. https://doi.org/10.1016/j.expthermflusci.2016.04.007.

    Article  CAS  Google Scholar 

  23. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a \(\perp\) shaped cavity filled by a MWCNT-Fe\(_3\)O\(_4\)/water hybrid nanofluids using LBM. Chem Eng Process-Process Intensif. 2018;125:56–66. https://doi.org/10.1016/j.cep.2018.01.004.

    Article  CAS  Google Scholar 

  24. Esfe MH, Arani AAA, Badi RS, Rejvani M. Ann modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT-SiO\(_2\)/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018b;131(3):2381–93. https://doi.org/10.1007/s10973-017-6744-z.

    Article  CAS  Google Scholar 

  25. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of al\(_2\)o\(_3\)-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036.

    Article  CAS  Google Scholar 

  26. Iqbal Z, Maraj E, Azhar E, Mehmood Z. A novel development of hybrid (MoS\(_2\)-SiO\(_2\)/H\(_2\)O) nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J Taiwan Inst Chem Eng. 2017;81:150–8. https://doi.org/10.1016/j.jtice.2017.09.037.

    Article  CAS  Google Scholar 

  27. Usman M, Hamid M, Zubair T, Haq RU, Wang W. Cu–Al\(_2\)O\(_3\)/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf. 2018;126:1347–56. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.005.

    Article  CAS  Google Scholar 

  28. Esfe MH, Amiri MK, Alirezaie A. Thermal conductivity of a hybrid nanofluid. J Therm Anal Calorim. 2018c;134(2):1113–22. https://doi.org/10.1007/s10973-017-6836-9.

    Article  CAS  Google Scholar 

  29. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131(2):1757–66. https://doi.org/10.1007/s10973-017-6624-6.

    Article  CAS  Google Scholar 

  30. Moldoveanu GM, Minea AA, Huminic G, Huminic A. Al\(_2\)O\(_3\)/TiO\(_2\) hybrid nanofluids thermal conductivity. J Therm Anal Calorim. 2019;137(2):583–92. https://doi.org/10.1007/s10973-018-7974-4.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134(3):2295–303. https://doi.org/10.1007/s10973-018-7866-7.

    Article  CAS  Google Scholar 

  32. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135(2):1009–19. https://doi.org/10.1007/s10973-018-7350-4.

    Article  CAS  Google Scholar 

  33. Bozorg MV, Siavashi M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int J Mech Sci. 2019;151:842–57. https://doi.org/10.1016/j.ijmecsci.2018.12.036.

    Article  Google Scholar 

  34. Hayat T, Khan MI, Qayyum S, Alsaedi A. Entropy generation in flow with silver and copper nanoparticles. Colloids Surf A. 2018;539:335–46. https://doi.org/10.1016/j.colsurfa.2017.12.021.

    Article  CAS  Google Scholar 

  35. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of mhd and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82. https://doi.org/10.1080/16583655.2018.1483795.

    Article  Google Scholar 

  36. Rashad A, Armaghani T, Chamkha A, Mansour M. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chinese journal of physics. 2018;56(1):193–211. https://doi.org/10.1016/j.cjph.2017.11.026.

    Article  CAS  Google Scholar 

  37. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by Lattice Boltzmann method. J Therm Anal Calorim. 2019;135(1):283–303. https://doi.org/10.1007/s10973-018-7061-x.

    Article  CAS  Google Scholar 

  38. Chamkha A, Rashad A, Armaghani T, Mansour M. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu-water nanofluid. J Therm Anal Calorim. 2018;132(2):1291–306. https://doi.org/10.1007/s10973-017-6918-8.

    Article  CAS  Google Scholar 

  39. Afridi M, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300. https://doi.org/10.1016/j.csite.2018.04.002.

    Article  Google Scholar 

  40. Nguyen TK, Sheikholeslami M, Shehzad SA, Shafee A, Alghamdi M. Solidification entropy generation via fem through a porous storage unit with applying a magnetic field. Phys Scr. 2019;94(9):095207. https://doi.org/10.1088/1402-4896/ab19ea.

    Article  CAS  Google Scholar 

  41. Alkanhal TA, Sheikholeslami M, Arabkoohsar A, Haq Ru, Shafee A, Li Z, et al. Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. Int J Heat Mass Transf. 2019;136:146–56. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.095.

    Article  CAS  Google Scholar 

  42. Ellahi R, Sait SM, Shehzad N, Ayaz Z. A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Methods Heat Fluid Flow. 2019;. https://doi.org/10.1108/HFF-06-2019-0506.

    Article  Google Scholar 

  43. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48. https://doi.org/10.1016/j.jmmm.2019.03.108.

    Article  CAS  Google Scholar 

  44. Zeeshan A, Shehzad N, Abbas T, Ellahi R. Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide-water nanofluid due to entropy generation. Entropy. 2019;21(3):236. https://doi.org/10.3390/e21030236.

    Article  CAS  Google Scholar 

  45. Hosseini S, Ghasemian M, Sheikholeslami M, Shafee A, Li Z. Entropy analysis of nanofluid convection in a heated porous microchannel under MHD field considering solid heat generation. Powder Technol. 2019;344:914–25. https://doi.org/10.1016/j.powtec.2018.12.078.

    Article  CAS  Google Scholar 

  46. Reddy PS, Chamkha A. Heat and mass transfer analysis in natural convection flow of nanofluid over a vertical cone with chemical reaction. Int J Numer Methods Heat Fluid Flow. 2017;27(1):2–22. https://doi.org/10.1108/HFF-10-2015-0412.

    Article  Google Scholar 

  47. Reddy PS, Sreedevi P, Chamkha AJ. Magnetohydrodynamic (MHD) boundary layer heat and mass transfer characteristics of nanofluid over a vertical cone under convective boundary condition. Propuls Power Res. 2018;7(4):308–19. https://doi.org/10.1016/j.jppr.2018.11.004.

    Article  Google Scholar 

  48. Patil P, Shashikant A, Hiremath P. Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int J Hydrog Energy. 2019;44(31):17061–71. https://doi.org/10.1016/j.ijhydene.2019.04.193.

    Article  CAS  Google Scholar 

  49. Sreedevi P, Reddy PS, Chamkha AJ. Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int J Mech Sci. 2018;135:646–55. https://doi.org/10.1016/j.ijmecsci.2017.12.007.

    Article  Google Scholar 

  50. Reddy PS, Chamkha AJ. Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alex Eng J. 2016;55(1):331–41. https://doi.org/10.1016/j.aej.2016.01.027.

    Article  Google Scholar 

  51. Basha HT, Animasaun I, Makinde O, Sivaraj R. Effect of electromagnetohydrodynamic on chemically reacting nanofluid flow over a cone and plate. In: Applied mathematics and scientific computing. Springer, Berlin; 2019b;99–107. https://doi.org/10.1007/978-3-030-01123-9_13.

  52. Hanif H, Khan I, Shafie S. MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Phys Scr. 2019;94(12):125208. https://doi.org/10.1088/1402-4896/ab36e1/meta.

    Article  CAS  Google Scholar 

  53. Sujatha T, Reddy KJ, Kumar JG. Chemical reaction effect on nonlinear radiative MHD nanofluid flow over cone and wedge. In: Defect and diffusion forum; Trans Tech Publ; 2019;393:83–102. https://doi.org/10.4028/www.scientific.net/DDF.393.83.

  54. Khan WA, Rashad A, Abdou M, Tlili I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur J Mech-B/Fluids. 2019;75:133–42. https://doi.org/10.1016/j.euromechflu.2019.01.002.

    Article  Google Scholar 

  55. Ramzan M, Mohammad M, Howari F. Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone. Sci Rep. 2019a;9(1):1–15. https://doi.org/10.1038/s41598-019-48645-9.

    Article  CAS  Google Scholar 

  56. Vijayalakshmi P, Gunakala SR, Animasaun I, Sivaraj R. Chemical reaction and nonuniform heat source/sink effects on casson fluid flow over a vertical cone and flat plate saturated with porous medium. In: Applied mathematics and scientific computing. Berlin: Springer; 2019; p. 117–127. https://doi.org/10.1007/978-3-030-01123-9_13.

  57. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019b;135(2):1399–415. https://doi.org/10.1007/s10973-018-7540-0.

    Article  CAS  Google Scholar 

  58. Yazdi M, Aghamajidi M, Dinarvand S, Pop I. Tiwari-Das nanofluid model for magnetohydrodynamics (MHD) natural-convective flow of a nanofluid adjacent to a spinning down-pointing vertical cone. Propuls Power Res. 2018;7(1):78–90. https://doi.org/10.1016/j.jppr.2018.02.002.

    Article  Google Scholar 

  59. Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017;7:2317–24. https://doi.org/10.1016/j.rinp.2017.06.034.

    Article  Google Scholar 

  60. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–81. https://doi.org/10.1063/1.1700493.

    Article  CAS  Google Scholar 

  61. Devi SA, Devi SSU. Numerical investigation of hydromagnetic hybrid Cu–Al\(_2\)O\(_3\)/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlinear Sci Numer Simul. 2016;17(5):249–57. https://doi.org/10.1515/ijnsns-2016-0037.

    Article  CAS  Google Scholar 

  62. Dogonchi A, Ismael MA, Chamkha AJ, Ganji D. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019b;135(6):3485–97. https://doi.org/10.1007/s10973-018-7520-4.

    Article  CAS  Google Scholar 

  63. Ghadikolaei S, Yassari M, Sadeghi H, Hosseinzadeh K, Ganji D. Investigation on thermophysical properties of TiO\(_2\)-Cu/H\(_2\)O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–38. https://doi.org/10.1016/j.powtec.2017.09.006.

    Article  CAS  Google Scholar 

  64. Maxwell JC. A treatise on electricity and magnetism; vol. 1. Oxford: Clarendon Press; 1873. https://scholar.google.com/scholar?hl=en&as_sdt=1%2C5&as_vis=1&q=A+treatise+on+electricity+and+magnetism+maxwell&btnG=.

  65. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorim. 2019;135(1):419–36. https://doi.org/10.1007/s10973-018-7037-x.

    Article  CAS  Google Scholar 

  66. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe\(_3\)O\(_4\)-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98. https://doi.org/10.1016/j.jclepro.2019.02.075.

    Article  CAS  Google Scholar 

  67. Soomro FA, Zaib A, Haq RU, Sheikholeslami M. Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int J Heat Mass Transf. 2019;129:1242–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.051.

    Article  CAS  Google Scholar 

  68. Ramzan M, Mohammad M, Howari F, Chung JD. Entropy analysis of carbon nanotubes based nanofluid flow past a vertical cone with thermal radiation. Entropy. 2019b;21(7):642. https://doi.org/10.3390/e21070642.

    Article  CAS  Google Scholar 

  69. Sambath P, Pullepu B, Hussain T, Shehzad SA. Radiated chemical reaction impacts on natural convective mhd mass transfer flow induced by a vertical cone. Results Phys. 2018;8:304–15. https://doi.org/10.1016/j.rinp.2017.12.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, H., Khan, I. & Shafie, S. Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J Therm Anal Calorim 141, 2001–2017 (2020). https://doi.org/10.1007/s10973-020-09256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09256-z

Keywords

Navigation