Skip to main content
Log in

Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixed convection of Cu–water nanofluid inside a two-sided lid-driven cavity filled with heterogeneous porous media is optimized. The horizontal walls are adiabatic and movable, and the vertical walls are exposed to constant hot and cold temperatures. Two-phase mixture model and Darcy–Brinkman–Forchheimer relation are implemented, respectively, for simulation of nanofluid and fluid flow through porous media. Pores size diameters of the porous medium in different regions are considered as decision variables for optimization process. In this regard, the cavity is divided into 25 parts, and the pore size of each part is found through the pattern search optimization algorithm. The optimization is performed in order to maximize Nuavg of the flow for various Rayleigh (Ra = 103–106) and Richardson (Ri = 0.01, 0.1, 1, 10 and 100) numbers. Gaining the optimized heterogeneous structure of the porous medium in which Nuavg is greater than that of the homogeneous medium with the highest Nusselt (\({\text{Nu}}_{{{\text{dp}}_{ \hbox{max} } }}\)) is the main goal of optimization. Results indicate that for more convection dominated flows (lower Ri and higher Ra numbers), the optimized heterogeneous porous medium could enhance heat transfer up to 8.3%. But the optimal porous medium for natural convection dominated flows (high Ri and low Ra values) is the homogeneous porous case with maximum pore size diameter. Furthermore, drag force on the driven lid increased up to 0.34% for the optimal cases which is very low and can be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J kg−1 K−1)

C d :

Drag coefficient

Da:

Darcy number

d p :

Pore size diameter of porous zone (m)

d np :

Nanoparticles diameter (m)

f drag :

Drag function

Gr:

Grashof number

g :

Gravity acceleration (m s−2)

h :

Heat transfer coefficient (W m−2 K−1)

k b :

Boltzmann constant (J K−1)

Nu:

Nusselt number

Pr:

Prandtl number

p :

Pressure (Pa)

q″:

Heat flux (W m−2)

Ra:

Rayleigh number

Ri:

Richarson number

T :

Temperature (K)

\(\vec{V}\) :

Velocity vector (m s−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

ε :

Porosity

\(\varphi\) :

Volume fraction

\(\kappa\) :

Permeability (m2)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\rho\) :

Density (kg m−3)

avg:

Average

c:

Cold wall

dr:

Drift

f:

Fluid

h:

Hot wall

m:

Mixture (nanofluid)

np:

Nanoparticles

References

  1. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017;133:73–90.

    Article  Google Scholar 

  2. Garoosi F, Rashidi MM. Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen’s two phase model. Int J Mech Sci. 2017;131:1026–48.

    Article  Google Scholar 

  3. Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304–21.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M, Shamlooei M, Moradi R. Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq. 2018;249:429–37.

    Article  CAS  Google Scholar 

  5. Moshizi S, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126(3):1947–62.

    Article  CAS  Google Scholar 

  6. Heris SZ, Pour MB, Mahian O, Wongwises S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. Int J Heat Mass Transf. 2014;73:231–8.

    Article  CAS  Google Scholar 

  7. Mashaei P, Shahryari M, Madani S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126(2):891–904.

    Article  CAS  Google Scholar 

  8. Khanafer K, Aithal S. Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder. Int J Heat Mass Transf. 2013;66:200–9.

    Article  Google Scholar 

  9. Khorasanizadeh H, Nikfar M, Amani J. Entropy generation of Cu–water nanofluid mixed convection in a cavity. Eur J Mech-B/Fluids. 2013;37:143–52.

    Article  Google Scholar 

  10. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  CAS  Google Scholar 

  11. Dondapati RS, Saini V, Verma KN, Usurumarti PR. Computational prediction of pressure drop and heat transfer with cryogen based nanofluids to be used in micro-heat exchangers. Int J Mech Sci. 2017;130:133–42.

    Article  Google Scholar 

  12. Nield DA, Bejan A, Nield-Bejan. Convection in porous media. Berlin: Springer; 2006.

    Google Scholar 

  13. Mehryan S, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.

    Article  CAS  Google Scholar 

  14. Esfe MH, Rostamian H, Toghraie D, Yan W-M. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.

    Article  CAS  Google Scholar 

  15. Selimefendigil F, Öztop HF. Mixed convection in a two-sided elastic walled and SiO2 nanofluid filled cavity with internal heat generation: effects of inner rotating cylinder and nanoparticle’s shape. J Mol Liq. 2015;212:509–16.

    Article  CAS  Google Scholar 

  16. Kefayati GR. Mesoscopic simulation of magnetic field effect on double-diffusive mixed convection of shear-thinning fluids in a two sided lid-driven cavity. J Mol Liq. 2014;198:413–29.

    Article  CAS  Google Scholar 

  17. Selimefendigil F, Öztop HF. Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation. Adv Powder Technol. 2015;26(6):1663–75.

    Article  CAS  Google Scholar 

  18. Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126(2):837–43.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Gorji-Bandpy M, Ganji D, Soleimani S. Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv Powder Technol. 2013;24(6):980–91.

    Article  CAS  Google Scholar 

  20. Selimefendigil F, Öztop HF. Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int J Mech Sci. 2016;118:113–24.

    Article  Google Scholar 

  21. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13–14):3187–96.

    Article  CAS  Google Scholar 

  22. Göktepe S, Atalık K, Ertürk H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int J Therm Sci. 2014;80:83–92.

    Article  Google Scholar 

  23. Oztop HF, Dagtekin I. Mixed convection in two-sided lid-driven differentially heated square cavity. Int J Heat Mass Transf. 2004;47(8–9):1761–9.

    Article  Google Scholar 

  24. Bourantas G, Skouras E, Loukopoulos V, Burganos V. Heat transfer and natural convection of nanofluids in porous media. Eur J Mech-B/Fluids. 2014;43:45–56.

    Article  Google Scholar 

  25. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    Article  CAS  Google Scholar 

  26. Sheremet MA, Dinarvand S, Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Physica E. 2015;69:332–41.

    Article  CAS  Google Scholar 

  27. Chamkha A, Rashad A, Armaghani T, Mansour M. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Thermal Anal and Calorimetry. 2017:1–16

  28. Kefayati GR. FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 2015;273:176–90.

    Article  CAS  Google Scholar 

  29. Lam PAK, Prakash KA. A numerical study on natural convection and entropy generation in a porous enclosure with heat sources. Int J Heat Mass Transf. 2014;69:390–407.

    Article  Google Scholar 

  30. Kefayati GR. FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci. 2015;95:29–46.

    Article  CAS  Google Scholar 

  31. Toosi MH, Siavashi M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J Mol Liq. 2017;238:553–69.

    Article  CAS  Google Scholar 

  32. Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Article  Google Scholar 

  33. Mahdavi M, Saffar-Avval M, Tiari S, Mansoori Z. Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int J Heat Mass Transf. 2014;79:496–506.

    Article  Google Scholar 

  34. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  35. Jang J, Chen J. Forced convection in a parallel plate channel partially filled with a high porosity medium. Int Commun Heat Mass Transfer. 1992;19(2):263–73.

    Article  CAS  Google Scholar 

  36. Aldoss TK, Alkam M, Shatarah M. Natural convection from a horizontal annulus partially filled with porous medium. Int Commun Heat Mass Transf. 2004;31(3):441–52.

    Article  Google Scholar 

  37. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf A Appl. 2014;65(11):1089–113.

    Article  CAS  Google Scholar 

  38. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numer Heat Transf A Appl. 2017;71(12):1251–73. https://doi.org/10.1080/10407782.2017.1345270.

    Article  CAS  Google Scholar 

  39. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29(1):142–56. https://doi.org/10.1016/j.apt.2017.10.021.

    Article  CAS  Google Scholar 

  40. Wang B, Hong Y, Hou X, Xu Z, Wang P, Fang X, et al. Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials. Energy Convers Manag. 2015;105:206–15.

    Article  Google Scholar 

  41. Siavashi M, Bahrami HRT, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using gradient and multi-layered porous foams. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.04.066.

    Article  Google Scholar 

  42. Savithiri S, Pattamatta A, Das SK. Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Res Lett. 2011;6(1):471. https://doi.org/10.1186/1556-276x-6-471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nithiarasu P, Seetharamu K, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf. 1997;40(16):3955–67.

    Article  CAS  Google Scholar 

  44. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. Technical Research Centre of Finland Finland; 1996.

  45. Naumann Z, Schiller L. A drag coefficient correlation. Z Ver Deutsch Ing. 1935;77:318–23.

    Google Scholar 

  46. Haddad Z, Oztop HF, Abu-Nada E, Mataoui A. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16(7):5363–78.

    Article  CAS  Google Scholar 

  47. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  48. Eberhart RC, Shi Y, Kennedy J. Swarm intelligence. Amsterdam: Elsevier; 2001.

    Google Scholar 

  49. Siavashi M, Garusi H, Derakhshan S. Numerical simulation and optimization of steam-assisted gravity drainage with temperature, rate, and well distance control using an efficient hybrid optimization technique. Numer Heat Transf A Appl. 2017;72(9):721–44.

    Article  Google Scholar 

  50. Hussain S, Mehmood K, Sagheer M, Yamin M. Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure. Int J Heat Mass Transf. 2018;122:1283–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Siavashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, P., Siavashi, M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim 135, 947–961 (2019). https://doi.org/10.1007/s10973-018-7335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7335-3

Keywords

Navigation