Skip to main content
Log in

Analytical investigation of nanoparticle migration in a duct considering thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Buongiorno model is applied to investigate nanofluid migration through a permeable duct in the presence of external forces. Influences of radiation and Joule heating on first law equation are added. Final formulas are solved via differential transform method. Roles of suction, thermophoretic, radiation and Brownian motion parameters, Schmidt number, Hartmann number, Eckert number were presented. Results show that temperature gradient improves with the enhancement of Reynolds number, suction and Radiation parameters. Nu augments with the augmentation of Hartmann and Eckert numbers, while reverse behavior is seen for skin friction coefficient. Also, it can be concluded that Nusselt number enhances with the increase in radiation parameter but it decreases with the increase in Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic induction (Tesla)

\(\Pr\) :

Prandtl number

\({\text{Rd}}\) :

Radiation parameter

\(Ha\) :

Hartmann number

\(C_{\text{p}}\) :

Specific heat capacity (J/kgK)

\(v,\,u\) :

Vertical and horizontal velocities (m/s)

\(q_{\text{r}}\) :

Thermal radiation (W)

\(T\) :

Fluid temperature (K)

\(\sigma_{\text{e}}\) :

Stefan–Boltzmann constant

\(\mu\) :

Dynamic viscosity (Pa s)

\(\phi\) :

Volume fraction of nanofluid

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\eta\) :

Similarity-independent variable

\(\beta_{\text{R}}\) :

Mean absorption coefficient

\(\sigma\) :

Electrical conductivity

\(T\) :

Thermal quantity

\(f\) :

Base fluid

References

  1. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  2. Maleki H, Safaei MR, Abdullah AA, Alrashed A, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7277-9.

    Article  Google Scholar 

  3. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    Article  CAS  Google Scholar 

  4. Hosseini SM, Safaei MR, Goodarzi M, Abdullah AA, Alrashed A, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.

    Article  CAS  Google Scholar 

  5. Esfahani JA, Safaei MR, Goharimanesh M, Oliveira LR, Goodarzi M, Shamshirband S, Filho EPB. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Techno. 2017;317:458–70.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77.

    Article  CAS  Google Scholar 

  8. Rizwan UH, Shahzad F, Al-Mdallal QM. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 2017;7:57–68.

    Article  Google Scholar 

  9. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  10. Arani AAA, AliAkbari O, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  12. Khodabandeh E, Safaei MR, Akbari S, AliAkbari O, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.

    Article  CAS  Google Scholar 

  13. Tao YB, He YL. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Appl Energy. 2015;143(1):38–46.

    Article  Google Scholar 

  14. Ahmed N, Adnan, Khan U, Mohyud-Din ST. Unsteady radiative flow of chemically reacting fluid over a convectively heated stretchable surface with cross-diffusion gradients. Int J Therm Sci. 2017;121:182–91.

    Article  CAS  Google Scholar 

  15. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  16. Alrashed AAAA, Gharibdousti MS, Goodarzi M, Oliveira LR, Safaei MR, Filho EPB. Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. Int J Heat Mass Transf. 2018;125:920–32.

    Article  CAS  Google Scholar 

  17. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7093-2.

    Article  Google Scholar 

  18. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7022-4.

    Article  Google Scholar 

  19. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    Article  CAS  Google Scholar 

  20. Goodarzi M, Safaei MR, Vafai K, Ahmadi G. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  22. Kandelousi MS. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A. 2014;378(45):3331–9.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Engrg. 2015;283:651–63.

    Article  Google Scholar 

  24. Sheikholeslami M, Shehzad SA, Abbasi FM, Li Z. Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput Methods Appl Mech Eng. 2018;338:491–505.

    Article  Google Scholar 

  25. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Shehzad SA, Li Z. Nanofluid heat transfer intensification in a permeable channel due to magnetic field using Lattice Boltzmann method. Physica B: Condens Matter. 2018;542:51–8.

    Article  CAS  Google Scholar 

  27. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  28. Jafaryar M, Sheikholeslami M, Li Z. CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2018;336:131–43.

    Article  CAS  Google Scholar 

  29. Safaei MR, Shadloo MS, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):1–14.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid: an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of Non-equilibrium model. J Mol Liquids. 2018;254:446–62.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M. Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann Method. J Mol Liq. 2017;231:555–65.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf. 2017;109:115–22.

    Article  CAS  Google Scholar 

  37. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018;10(1063/1):5012517.

    Google Scholar 

  39. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via Non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  41. Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A. MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci. 2018;135:532–40.

    Article  Google Scholar 

  42. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  43. Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: Effects of different modeling approaches. Heat Transf Eng. 2017;38(9):853–66.

    Article  CAS  Google Scholar 

  44. Shadloo MS, Hadjadj A, Hussain F. Statistical behavior of supersonic turbulent boundary layers with heat transfer at M∞ = 2. Int J Heat Fluid Flow. 2015;53:113–34.

    Article  Google Scholar 

  45. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  46. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118(2018):823–31.

    Article  CAS  Google Scholar 

  47. Sheikholeslami M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  48. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  49. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  50. Sheikholeslami M, Seyednezhad M. Lattice Boltzmann method simulation for CuO-water nanofluid flow in a porous enclosure with hot obstacle. J Mol Liq. 2017;243:249–56.

    Article  CAS  Google Scholar 

  51. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    Article  CAS  Google Scholar 

  52. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann Method. J Mol Liq. 2017;234:364–74.

    Article  CAS  Google Scholar 

  53. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  54. Safaei MR, Gooarzi M, Akbari OA, Shadloo MS, Dahari M, Book CH, Performance evaluation of nanofluids in a rib-microchannel for electronics cooling application. In: The book: electronics cooling. InTech Publications; 2016.

  55. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    Article  CAS  Google Scholar 

  56. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.

    Article  CAS  Google Scholar 

  58. Sheikholeslami M. Magnetic field influence on CuO -H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42:19611–21.

    Article  CAS  Google Scholar 

  59. Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non-darcy model. Eng Comput. 2017;34(8):2651–67.

    Article  Google Scholar 

  60. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805.

    Article  CAS  Google Scholar 

  61. Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    Article  CAS  Google Scholar 

  62. Sheikholeslami M. Lattice Boltzmann method simulation of MHD non-darcy nanofluid free convection. Phys B. 2017;516:55–71.

    Article  CAS  Google Scholar 

  63. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    Article  CAS  Google Scholar 

  64. Sheikholeslami M. CuO-water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017;132:55. https://doi.org/10.1140/epjp/i2017-11330-3.

    Article  CAS  Google Scholar 

  65. Sheikholeslami M. Numerical investigation of MHD nanofluid free convective heat transfer in a porous tilted enclosure. Eng Comput. 2017;34(6):1939–55.

    Article  Google Scholar 

  66. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.

    Article  CAS  Google Scholar 

  67. Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A. 2017;381:494–503.

    Article  CAS  Google Scholar 

  68. Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq. 2017;225:903–12.

    Article  CAS  Google Scholar 

  69. Sheikholeslami M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur Phys J Plus. 2016;131:413. https://doi.org/10.1140/epjp/i2016-16413-y.

    Article  CAS  Google Scholar 

  70. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    Article  CAS  Google Scholar 

  71. Sheikholeslami M, Chamkha AJ. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq. 2017;225:750–7.

    Article  CAS  Google Scholar 

  72. Sheikholeslami M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. Int J Hydrogen Energy. 2017;42:821–9.

    Article  CAS  Google Scholar 

  73. Sheikholeslami M, Vajravelu K, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    Article  CAS  Google Scholar 

  74. Sheikholeslami M, Li Z, Shamlooei M. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A. 2018;382:1615–32.

    Article  CAS  Google Scholar 

  75. Shadloo MS, Hadjadj A. Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: a numerical study. Numer Heat Transf Part A: Appl. 2017. https://doi.org/10.1080/10407782.2017.1353380.

    Article  Google Scholar 

  76. Raptis A. Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf. 1998;25:289–95.

    Article  CAS  Google Scholar 

  77. Vajravelu K, Kumar BVR. Analytic and numerical solutions of coupled nonlinear system arising in three-dimensional rotating flow. Int J Non-Linear Mech. 2004;39:13–24.

    Article  Google Scholar 

  78. Mehmood A, Ali A. Analytic solution of three-dimensional viscous flow and heat transfer over a stretching flat surface by homotopy analysis method. ASME J Heat Trans. 2008;130:12701-1–7.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to King Khalid University, Abha 61413, Saudi Arabia, for providing administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Saleem, S., Shafee, A. et al. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim 135, 1629–1641 (2019). https://doi.org/10.1007/s10973-018-7517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7517-z

Keywords

Navigation