Skip to main content
Log in

Thermal behaviour of Estonian phosphorites from different deposits

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behaviour of shelly Estonian phosphorite ores from Iru, Toolse, Ülgase deposits and their concentrates have been studied. The phosphorus-bearing mineral in Estonian phosphate ore is fluorcarbonate apatite (francolite), originated from brachiopod Obolus apollinis shells that makes it different from all other sedimentary phosphate ores. The experiments on a Setaram Labsys Evo 1600 thermoanalyzer coupled with Pfeiffer Omnistar Mass Spectrometer for evolved gases analysis were carried out under non-isothermal condition at the heating rate of 10 °C min−1 up to 1200 °C in an oxidizing and inert atmosphere containing 79% of Ar and 21% of O2 or 100% Ar, respectively. The results obtained indicated the complicated character of transformations occurring at thermal treatment of Estonian phosphorites and certain differences depending on the mineralogical composition of sample and gaseous environment. The changes in francolite structure, probable substitution of sulphur additionally to carbonate, were studied by FTIR and XRD. The oxygen in gaseous atmosphere suppresses the liberation of carbonate and sulphate from the structure of francolite. The character of CO2 and SO2 release at heating depending on the atmosphere composition was explained. The impact of thermal treatment of phosphorite on the P2O5, CaO and SO−24 solubility in 2% citric acid solution and on the particles pore volume, as well as their dependence on each other, was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. U.S.Geological Survay. Mineral commodity summaries 2018. Phosphate Rock. http://www.minerals.usgs.gov. Accessed Apr 2019.

  2. Pufahl PK, Groat LA. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Econ Geol. 2017;112:483–516.

    Article  Google Scholar 

  3. Cordell D, Drangert J-O, White S. The story of phosphorus: global food security and food for thought. Glob Environ Change. 2009;19:292–305.

    Article  Google Scholar 

  4. North Africa: phosphates powerhouse. Regional report. Fertil Int. 2019;489:42–46. http://fertilizerinternational.com. Accessed Apr 2019.

  5. Cordell D, White S. Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy. 2013;3:86–116.

    Article  Google Scholar 

  6. http://www.maeselts.ee/ulevaade-fosforiidist. Accessed Mar 2010.

  7. El Asri S, Laghzizil A, Alaoui A, Saoiabi A, M’Hamdi R, El Abbassi K, Hakam A. Structure and thermal behaviors of Moroccan phosphate rock (Bengurir). J Therm Anal Calorim. 2009;95:15–9.

    Article  Google Scholar 

  8. Laghzizil A, Elhrech N, Britel O, Bouhaouss A, Ferhat M. Removal of fluoride from Moroccan phosphate and synthetic fluorapatites. J Fluorine Chem. 2000;101:69–73.

    Article  CAS  Google Scholar 

  9. Aouad A, Benchanâa M, Mokhlisse A, Ounas A. Thermal analysis of Moroccan phosphates “Youssoufia” in an oxidative atmosphere by TG and DSC. J Therm Anal Calorim. 2004;75:887–900.

    Article  CAS  Google Scholar 

  10. Mgaidi A, Ben Brahim F, Oulahna D, Nzihou A, El Maaoui M. Chemical and structural changes of raw phosphate during heat treatment. High Temp Mater Proc. 2004;23:185–94.

    Article  CAS  Google Scholar 

  11. Elgharbi S, Horchani-Naifer K, Férid M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcination. J Therm Anal Calorim. 2015;119:265–71.

    Article  CAS  Google Scholar 

  12. Bachouâ H, Othmani M, Coppel Y, Fatteh N, Debbabi M, Badraoui B. Structural and thermal investigations of a Tunisian natural phosphate rock. J Mater Environ Sci. 2014;5:1152–9.

    Google Scholar 

  13. Galai H, Sliman F. Mineral characterization of the Oum El Khacheb phosphorites (Gafsa-Metlaoui basin; S Tunisia). Arab J Chem. 214. In press, corrected proofs available online 24 October 2014.

  14. Knubovets R, Nathan Y, Shoval S, Rabinowitz J. Thermal transformation in phosphorites. J Therm Anal Calorim. 1997;50:229–39.

    Article  CAS  Google Scholar 

  15. Nemliher J, Kurvits T, Kallaste T, Puura I. Apatite varieties in the shell of the Cambrian lingulate brachiopod Obolus apollinis Eichwald. Pros Estonian Acad Sci Geol. 2004;53:246–56.

    CAS  Google Scholar 

  16. Nemliher J. A new type of shell structure in a phosphatic brachiopod from the Cambrian of Estonia. Pros Estonian Acad Sci Geol. 2006;55:259–68.

    Google Scholar 

  17. Veiderma M. Phosphorite—vital resource for Estonia. Phosphorus Potassium. 1993;185:31–2.

    Google Scholar 

  18. Kaljuvee T, Veiderma M, Tõnsuaadu K, Vilbok H. Physico-chemical transformations during heating of phosphorites. J Therm Anal. 1988;33:839–44.

    Article  Google Scholar 

  19. Veiderma M, Kaljuvee T, Knubovets R, Põldme M, Tõnsuaadu K. Thermal transformations in systems based on natural apatites. Phosphorus Sulfur Silicon. 1990;52:125–9.

    Article  Google Scholar 

  20. Veiderma M. Studies on thermochemistry and thermal processing of apatites. Proc Estonian Acad Sci Chem. 2000;49:5–18.

    CAS  Google Scholar 

  21. Schröder JJ, Smit AL, Cordell D, Rosemarin A. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere. 2011;84:822–31.

    Article  Google Scholar 

  22. Gaxiola RA, Edwards M, Elser JJ. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere. 2011;84:840–5.

    Article  CAS  Google Scholar 

  23. Lu C, Tian H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data. 2017;9:181–92.

    Article  Google Scholar 

  24. Taylor JC. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991;6:2–9.

    Article  CAS  Google Scholar 

  25. Ward CR, Taylor JC, Cohen DR. Quantitative mineralogy of sandstones by X-ray diffractrometry and normative analysis. J Sediment GeoSci. 1999;69:1050–62.

    CAS  Google Scholar 

  26. Method 3.1.3. Extraction of the phosphorus soluble in 2% citric acid. Official Journal of the European Union. 21. 11. 2003;123–24.

  27. Fan H, Song B, Li Q. Thermal behavior of goethite during transformation to hematite. Mater Chem Phys. 2006;98:148–53.

    Article  CAS  Google Scholar 

  28. Diko M, Ekosse G, Ogola J. Fourier transform infrared spectroscopy and thermal analyses of kaolinitic clays from South Africa and Cameroon. Acta Geodyn Geomater. 2016;13:149–58.

    Google Scholar 

  29. Zhang M, Redfern SAT, Salje EKH, Carpenter MA, Hayward CL. Thermal behavior of vibrational phonons and hydroxyls of muscovita in dehydroxylation: in situ high-temperature infrared spectroscopic investigations. Am Mineral. 2010;95:1447–57.

    Google Scholar 

  30. Paulik F, Paulik J, Arnold M. Kinetics and mechanism of decomposition of pyrite under conventional and quasi-isothermal–quasi-isobaric thermoanalytical conditions. J Therm Anal Calorim. 1982;25:313–25.

    Article  CAS  Google Scholar 

  31. Pelovski Y, Petkova V. Investigation on thermal decomposition of pyrite. Part I. J Therm Anal Calorim. 1999;56:95–9.

    Article  CAS  Google Scholar 

  32. Hu G, Dam-Johansen K, Wedel S, Hansen JP. Decomposition and oxidation of pyrite. Prog Energy Combust Sci. 2006;32:295–314.

    Article  CAS  Google Scholar 

  33. Põldme M, Põldme J, Utsal K, Kirs J. Thermal behavior of Estonian pyritic phosphorites. J Inorg Chem. 1985;30:877–81 (in Russian).

    Google Scholar 

  34. Petkova V, Koleva V, Kostova Sarov S. Structural and thermal transformations on high energy milling of natural apatite. J Therm Anal. 2015;121:217–25.

    Article  CAS  Google Scholar 

  35. Baumer A, Caruba R, Ganteaume M. Carbonate-fluorapatite: mise en évidence de la substitution 2PO43− → SiO44− + SO42− par spectrométrie infrarouge. Eur J Mineral. 1990;2:297–304.

    Article  CAS  Google Scholar 

  36. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials. 2007;28:3043–54.

    Article  CAS  Google Scholar 

  37. Koleva V, Petkova V. IR spectroscopic study of high energy activated Tunisian phosphorite. Vib Spectosc. 2012;58:125–32.

    Article  CAS  Google Scholar 

  38. Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.

    Article  Google Scholar 

  39. Eisazadeh A, Kassim KA, Nur H. Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl Clay Sci. 2012;67–68:5–10.

    Article  Google Scholar 

  40. Alver BE, Dikmen G, Alver Ö. Investigation of the influence of heat treatment on the structural properties of illite-rich clay mineral using FT-IR, 29Si MAS NMR, TG and DTA methods. Anadolu Univ J Sci Technol A Appl Sci Eng. 2016;17(5):823–9.

    Google Scholar 

  41. Smith DH, Seshadri KS. Infrared spectra of Mg2Ca(SO4)3, MgSO4, hexagonal CaSO4 and orthorhombic CaSO4. Spectrochim Acta, Part A. 1999;55:795–805.

    Article  Google Scholar 

  42. Tõnsuaadu K, Peld M, Quarton M, Bender V, Veiderma M. Studies on SO42− ion incorporation into apatite structure. Phosphorus Sulfur Silicon. 2002;177:1873–6.

    Article  Google Scholar 

  43. Veiderma M, Tõnsuaadu K, Knubovets R, Peld M. Impact of anion substitutions on apatite structure and properties. J Organometall Chem. 2005;690:2638–43.

    Article  CAS  Google Scholar 

  44. Tran LK, Stepien K, Yoder C. Substitution of sulfate in apatite. Am Mineral. 2017;102:1971–6.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Institutional Research Funding (IUT33-19) of the Estonian Ministry of Education and Research and by Research Grant RITA1/01-01-11 (LEP 17096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiit Kaljuvee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaljuvee, T., Tõnsuaadu, K., Traksmaa, R. et al. Thermal behaviour of Estonian phosphorites from different deposits. J Therm Anal Calorim 142, 437–449 (2020). https://doi.org/10.1007/s10973-019-09056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09056-0

Keywords

Navigation