Skip to main content
Log in

Structural and thermal transformations on high energy milling of natural apatite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work we investigated the isomorphic substitution and thermal decomposition of sedimentary fluor apatite (FAp) (with Ca/P ratio > 1.67) from Tunisia after high-energy-milling (HEM) activation at different times from 10 to 600 min. The chemical composition of the material includes: 29.6 % P2O total5 and 46.5 % CaO (main components) and 3.5 % F; 0.55 % R2O3 (R = Al, Fe); 1.1 % SO3; 1.9 % SiO2 (a low content in a comparison with other natural apatites from North Africa or Asia); 0.35 % MgO; 0.05 % Cl; 6.6 % CO2 are impurities. HEM is a well-known approach for preparing various solid materials and for increasing their reactivity. The solid-state transformation of the initial and HEM-activated apatite samples was examined by chemical analysis, BET, powder XRD, FTIR spectroscopy, and thermal analysis. The structure of natural apatite allows isomorphic substitutions of carbonate, hydroxyl, and metal ions by PO 3−4 , Ca2+, and F. The obtained powder XRD data indicate an increased defectiveness of the apatite structure in the course of the HEM. The solid-state transformations of the initial and HEM-activated apatite are examined by TG–DTA analyses. It is found that the thermal stability of the activated samples decreases as compared to the initial sample. This is related to the increased defectivity of the apatite structure during the high-energy milling shown by the XRD data. The thermal analysis allows the differentiation of the structurally bonded A, B, and A-B types carbonate ions from these originating from the calcite and dolomite admixtures. The results obtained demonstrate that the mechanical distortion and the structural changes related to the migration of the carbonate ions from B type to A-type channel positions are the main factors responsible for the enhanced solubility of the high-energy activated FAp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HEM:

High-energy milling

Ap:

Apatite

HAp:

Hydroxyl-apatite

ClAp:

Chlorine-apatite

FAp:

Flour-apatite

HCAp:

Hydroxyl-carbonate-apatite

HCFAp:

Hydroxyl-carbonate-flour–apatite

HFAp:

Hydroxyl-flour-apatite

CFAp, TF0:

Natural carbonate-flour-apatite Ca5F(PO4)3, Non-activated

TF10:

Ca5F(PO4)3, HEM activated 10 min

TF30:

Ca5F(PO4)3, HEM activated 30 min

TF60:

Ca5F(PO4)3, HEM activated 60 min

TF120:

Ca5F(PO4)3, HEM activated 120 min

TF150:

Ca5F(PO4)3, HEM activated 150 min

TF240:

Ca5F(PO4)3, HEM activated 240 min

TF300:

Ca5F(PO4)3, HEM activated 300 min

TF600:

Ca5F(PO4)3, HEM activated 600 min

XRD:

Powder X-ray diffraction

FTIR:

Furier transform infra-red

TG-DTG-DTA,TA:

Thermal analyses

ML:

Mass losses

Tinfl :

Temperature in inflection point

P2O ass5 :

Assimilable P2O5

P2O tot5 :

Total P2O5

References

  1. Elliot JC. Structure and chemistry of the apatite and other calcium orthophosphate, studies in inorganic chemistry. Amsterdam: Elsevier; 1994.

    Google Scholar 

  2. Chaikina MV. Mechanochemistry of natural and synthetic apatites. In: Avvakumov EG. Novosibirsk: Publishing house of SB RAS, Branch “GEO”; 2002. p. 11–15, 105–107, 114–115, 139.

  3. Koleva V, Petkova V. IR spectroscopic study of high energy activated Tunisian phosphorite. Vib Spectrosc. 2012;58:125–32.

    Article  CAS  Google Scholar 

  4. Yaneva V, Petrov O, Petkova V. Structural and spectroscopic studies of the nanosize apatite (Syrian). Mater Res Bull. 2009;44:693–9.

    Article  CAS  Google Scholar 

  5. Petkova V, Yaneva V. Thermal behavior and phase transformations of nanosized apatite (Syria). J Therm Anal Cal. 2010;99(1):179–89.

    Article  CAS  Google Scholar 

  6. Tonsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M. A thermoanalytical study of synthetic carbonatecontaining apatites. Thermochim Acta. 1995;256:55–65.

    Article  CAS  Google Scholar 

  7. Tonsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Cal. 2012;110(2):647–59.

    Article  CAS  Google Scholar 

  8. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.

    Article  CAS  Google Scholar 

  9. Jebri S, Boughzala H, Bechrifa A, Jemal M. Structural analysis and thermochemistry of “A” type phosphostrontium carbonate hydroxyapatites. J Therm Anal Cal. 2012;107(3):963–72.

    Article  CAS  Google Scholar 

  10. Petkova V, Serafimova E, Petrova N, Pelovski Y. Thermochemistry of triboactivated Natural and NH4-exchanged Clinoptilolite mixed with Tunisian apatite. J Therm Anal Cal. 2011;105:535–44.

    Article  CAS  Google Scholar 

  11. Tõnsuaadu K, Kaljuvee T, Petkova V, Traksmaa R, Bender V, Kirsimäe K. Impact of mechanical activation on physical and chemical properties of phosphorite concentrates. Int J Min Process. 2011;100:104–9.

    Article  Google Scholar 

  12. Balaz P. Mechanochemistry in nanoscience and minerals engineering. Berlin: Springer; 2008.

    Google Scholar 

  13. Petkova V, Yaneva V. The effect of mechano-chemical activation on the chemical activity, structural and thermal properties of carbonate substituted apatite from Syria. Part I. Chemical, Structural, and Spectroscopic Investigations. J Environ Prot Ecology. 2012;13(2A):979–94.

    CAS  Google Scholar 

  14. El Feki H, Savariault JM, Ben Salah A. Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2. J Alloy Compd. 1999;287:114–20.

    Article  Google Scholar 

  15. Fleet ME, Liu X. Carbonate apatite type A synthesized at high pressure: new space group (P3) and orientation of channel carbonate ion. J Solid State Chem. 2003;174:412–7.

    Article  CAS  Google Scholar 

  16. Fleet ME, Liu X. Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem. 2004;177:3174–82.

    Article  CAS  Google Scholar 

  17. Fleet ME, Liu X. Local structure of channel ions in carbonate apatite. Biomaterials. 2005;26:7548–54.

    Article  CAS  Google Scholar 

  18. Fleet ME, Liu X. Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials. 2007;28:916–26.

    Article  CAS  Google Scholar 

  19. Fleet ME. Infrared spectra of carbonate apatites: ν2-region bands. Biomaterials. 2009;30:1473–81.

    Article  CAS  Google Scholar 

  20. Gorodylova N, Šulcová P, Bosacka M, Filipek E. DTA-TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7. J Therm Anal Cal. 2014 (In press).

  21. Gorodylova N, Dohnalová Ž, Šulcová P. Effect of the synthesis conditions on the formation of MgSrP2O7 and its characterisation for pigmentary application. J Therm Anal Cal. 2013;113:147–55.

    Article  CAS  Google Scholar 

  22. Kostova BV, Petrova NL, Petkova V. The high energy milling effect on positional redistribution of CO3−ions in the structure of sedimentary apatite. Bul Chem Commun. 2013;45(4):601–6.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research and Engineering Council of Canada and grant BG051PO001/3.3-05 from the Bulgarian Ministry of Education and Science. The authors would like to express their gratitude to Operating Programme Human Resources Development; Grant agreement: BG051PO001/3.3-05-001 “Science and Business” Funded by: EC, European Social Fund for their financial support. V. Koleva is grateful to National Science Fund of Bulgaria for the financial support by National Centre for New Materials UNION, Contract No DCVP-02/2/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilma Petkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petkova, V., Koleva, V., Kostova, B. et al. Structural and thermal transformations on high energy milling of natural apatite. J Therm Anal Calorim 121, 217–225 (2015). https://doi.org/10.1007/s10973-014-4205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4205-5

Keywords

Navigation