Skip to main content
Log in

Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization (NIC) of isotactic polypropylene (iPP) and its composites with submicronic talc particles (μ-talc) was investigated by differential scanning calorimetry. The modeling of the NIC kinetics of the iPP matrix was performed using Jeziorny-modified Avrami’s model, Ozawa’s and Mo’s theoretical approaches. The Jeziorny’s and Ozawa’s theories allowed us to confirm that the μ-talc filler particles significantly promote the NIC kinetics of the iPP matrix which noticeably manifests itself via a change in the nucleation mechanism. However, Mo’s model proved to be the more relevant model to account for the NIC of the present materials. In parallel, the activation energy and nucleation activity of NIC were calculated by Kissinger’s and Dobreva’s methods, respectively. Both approaches reveal that a maximum nucleation activity of μ-talc takes place for 20% filler content. This finding is discussed in relation to the μ-talc content thresholds of mechanical percolation and crystallinity saturation that were reported in previous studies for these composites, about 10 and 30% μ-talc, respectively. An endeavor of physical explanation for these phenomena is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Karger-Kocsis J, editor. Polypropylene: an A-Z reference. Dordrecht: Springer Science Business; 1999.

    Google Scholar 

  2. Karger-Kocsis J, editor. Polypropylene: structure, blends and composites; Vol. 3: composites. London: Chapman and Hall; 1994.

    Google Scholar 

  3. Rothon RN, editor. Particulate-filled polymer composites. 2nd ed. Shrewsbury: Rapra Technology Ltd.; 2002.

    Google Scholar 

  4. Oya A, Kurokawa Y, Yasuda H. Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci. 2000;35:1045–50.

    Article  CAS  Google Scholar 

  5. Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC. Fiber-reinforced polymer composites for construction—state of the art—review. J Compos Constr. 2002;6:73–87.

    Article  CAS  Google Scholar 

  6. Hussain F, Hojjati M, Okamoto M, Gorga RE. Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  7. Százdi L, Pozsgay A, Pukánszky B. Factors and processes influencing the reinforcing effect of layered silicates in polymer nanocomposites. Eur Polym J. 2007;43:345–59.

    Article  Google Scholar 

  8. Arroyo M, Lopez-Manchado MA, Avalos F. Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibres. Polymer. 1997;38:5587–93.

    Article  CAS  Google Scholar 

  9. Thomason JL. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene. The properties of injection moulded long fibre PP at high fibre content. Compos Part A Appl Sci Manuf. 2005;36:995–1003.

    Article  Google Scholar 

  10. Cui L, Wang P, Zhang Y, Zhou X, Xu L, Zhang L, Guo X. Glass fiber reinforced and β-nucleating agents regulated polypropylene: a complementary approach and a case study. J Appl Polym Sci. 2018;135:45768.

    Article  Google Scholar 

  11. McGenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Elton NJ, Adams JM. Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer. 1992;33:5215–24.

    Article  CAS  Google Scholar 

  12. Gonzalez A, de Saja JA, Alonso M. Morphology and tensile properties of compression-moulded talc-filled polypropylene. Plast Rubber Compos Proc Appl. 1995;3:131–7.

    Google Scholar 

  13. Leong YW, Abu Bakar MB, Ishak ZAM. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci. 2004;91:3315–26.

    Article  CAS  Google Scholar 

  14. Weon JI, Sue HJ. Mechanical properties of talc- and CaCO3-reinforced high-crystallinity polypropylene composites. J Mater Sci. 2006;41:2291–300.

    Article  CAS  Google Scholar 

  15. Abu Bakar MB, Leong YW, Ariffin A, Ishak ZAM. Mechanical, flow and morphological properties of talc- and kaolin-filled polypropylene hybrid composites. J Appl Polym Sci. 2007;104:434–41.

    Article  CAS  Google Scholar 

  16. Fujiyama M, Wakino T. Crystal orientation in injection molding of talc-filled polypropylene. J Appl Polym Sci. 1991;42:9–20.

    Article  CAS  Google Scholar 

  17. Maiti SN, Sharma KK. Studies on polypropylene composites filled with talc particles. J Mater Sci. 1992;27:4605–13.

    Article  CAS  Google Scholar 

  18. Guerrica-Echevarria G, Eguiazabal JI, Nazabal J. Effects of reprocessing conditions on the properties of unfilled and talc-filled polypropylene. Polym Degrad Stabil. 1996;53:1–8.

    Article  CAS  Google Scholar 

  19. Fujiyama M. Crystal orientation in injection moldings of talc-filled polyolefins. Int Polym Proc. 1998;13:284–90.

    Article  CAS  Google Scholar 

  20. Naiki M, Fukui Y, Matsumura T, Nomura T, Matsuda M. The effect of talc on the crystallization of isotactic polypropylene. J Appl Polym Sci. 2001;79:1693–703.

    Article  CAS  Google Scholar 

  21. Choi WJ, Kim SC. Effects of talc orientation and non-isothermal crystallization rate on crystal orientation of polypropylene in injection-molded polypropylene/ethylene–propylene rubber/talc blends. Polymer. 2004;45:2393–401.

    Article  CAS  Google Scholar 

  22. Rotzinger B. Talc-filled PP: a new concept to maintain long term heat stability. Polym Degrad Stabil. 2006;91:2884–7.

    Article  CAS  Google Scholar 

  23. Zhou X-P, Xie X-L, Yu Z-Z, Mai Y-W. Intercalated structure of polypropylene/in situ polymerization-modified talc composites via melt compounding. Polymer. 2007;48:3555–64.

    Article  CAS  Google Scholar 

  24. Branciforti MC, Oliveira CA, de Sousa JA. Molecular orientation, crystallinity, and flexural modulus correlations in injection molded polypropylene/talc composites. Polym Adv Technol. 2010;21:322–30.

    CAS  Google Scholar 

  25. Castillo LA, Barbosa SE, Capiati NJ. Surface-modified talc particles by acetoxy groups grafting: effects on mechanical properties of polypropylene/talc composites. Polym Eng Sci. 2013;53:89–95.

    Article  CAS  Google Scholar 

  26. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep. 2000;28:1–63.

    Article  Google Scholar 

  27. Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci. 2015;51:127–87.

    Article  CAS  Google Scholar 

  28. Vermogen A, Masenelli-Varlot K, Seguela R, Duchet-Rumeau J, Boucard S, Prele P. Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules. 2005;38:9661–9.

    Article  CAS  Google Scholar 

  29. Wang LM. Preparation and characterization of polypropylene/clay nanocomposites. Appl Mech Mater. 2011;55:1584–7.

    Article  Google Scholar 

  30. Zhu S, Chen J, Zuo Y, Li H, Cao Y. Montmorillonite/polypropylene nanocomposites: mechanical properties, crystallization and rheological behaviors. Appl Clay Sci. 2011;52:171–8.

    Article  CAS  Google Scholar 

  31. Levita G, Marchetti A, Lazzeri A. Fracture of ultrafine calcium carbonate/polypropylene composites. Polym Compos. 1989;10:39–43.

    Article  CAS  Google Scholar 

  32. Mareri P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler: effect of filler surface treatment. Compos Sci Technol. 1998;58:747–52.

    Article  CAS  Google Scholar 

  33. Cayer-Barrioz J, Ferry L, Frihi D, Cavalier K, Seguela R, Vigier G. Microstructure and mechanical behavior of polyamide 66-precipitated calcium carbonate composites: influence of the particle surface treatment. J Appl Polym Sci. 2006;100:989–99.

    Article  CAS  Google Scholar 

  34. Huang Y, Chen G, Yao Z, Li H, Wu Y. Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate patrticles. Eur Polym J. 2005;41:2753–60.

    Article  CAS  Google Scholar 

  35. Yang K, Yang Q, Li G, Sun Y, Feng D. Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Mater Lett. 2006;60:805–9.

    Article  CAS  Google Scholar 

  36. Jiang L, Zhang J, Wolcott MP. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer. 2007;48:7632–44.

    Article  CAS  Google Scholar 

  37. Gahleitner M, Grein C, Bernreitner K. Synergistic mechanical effects of calcite micro- and nanoparticles and β-nucleation in polypropylene copolymers. Eur Polym J. 2012;48:49–59.

    Article  CAS  Google Scholar 

  38. Fernando NAS, Thomas NL. Investigation of precipitated calcium carbonate as a processing aid and impact modifier in poly(vinyl chloride). Polym Eng Sci. 2012;52:2369–74.

    Article  CAS  Google Scholar 

  39. Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffret F, Ferret J. Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J Mater Sci. 2002;37:1561–73.

    Article  CAS  Google Scholar 

  40. Frihi D, Masenelli-Varlot K, Vigier G, Satha H. Mixed percolating network and mechanical properties of polypropylene/talc composites. J Appl Polym Sci. 2009;145:3097–105.

    Article  Google Scholar 

  41. Makhlouf A, Satha H, Frihi D, Gherib S, Seguela R. Optimization of the crystallinity of polypropylene/submicronic-talc composites: the role of filler ratio and cooling rate. Express Polym Lett. 2016;10:237–47.

    Article  CAS  Google Scholar 

  42. Fornes DT, Paul DR. Crystallization behavior of nylon6 nanocomposites. Polymer. 2003;44:3945–61.

    Article  CAS  Google Scholar 

  43. Lincoln DM, Vaia RA, Wang Z-G, Hsiao BS. Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer. 2001;42:1621–31.

    Article  CAS  Google Scholar 

  44. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  45. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  46. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene-terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  47. Durmus A, Yalçinyuva T. Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res. 2009;16:489–98.

    Article  CAS  Google Scholar 

  48. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  49. Liu TX, Mo ZS, Zhang HF. Non-isothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  50. Liu SY, Yu YG, Cui Y, Zhang HF, Mo ZS. Isothermal and non-isothermal crystallization kinetics of nylon11. J Appl Polym Sci. 1998;70:2371–80.

    Article  CAS  Google Scholar 

  51. Liu TX, Mo ZS, Wang SG, Zhang HF. Non-isothermal melt & cold crystallization kinetics of poly(ary1-ether-ether-ketone-ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  52. Labour T, Gauthier C, Seguela R, Vigier G, Bomal Y, Orange G. Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer. 2001;42:7127–35.

    Article  CAS  Google Scholar 

  53. Grein C. Toughness of neat, rubber-modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci. 2005;188:43–104.

    Article  CAS  Google Scholar 

  54. Ariffin A, Ariff ZM, Jikan SS. Evaluation on non-isothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim. 2011;103:171–7.

    Article  CAS  Google Scholar 

  55. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  56. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-Cryst Solids. 1993;162:1–12.

    Article  CAS  Google Scholar 

  57. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

  58. Favier V, Chanzy H, Cavaille J-Y. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules. 1996;28:6365–7.

    Article  Google Scholar 

  59. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci. 2011;36:638–70.

    Article  CAS  Google Scholar 

  60. Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwong S. Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim. 2011;103:1017–26.

    Article  CAS  Google Scholar 

  61. Shi YH, Dou Q. Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim. 2013;112:901–11.

    Article  CAS  Google Scholar 

  62. Dai X, Zhang Z, Chen C, Li M, Tan Y, Mai K. Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. J Therm Anal Calorim. 2015;121:829–38.

    Article  CAS  Google Scholar 

  63. Layachi A, Frihi D, Satha H, Seguela R, Gherib S. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim. 2016;124:1319–29.

    Article  CAS  Google Scholar 

  64. Fillon B, Lotz B, Thierry A, Wittmann J-C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α-phase). J Polym Sci Polym Phys. 1993;31:1395–405.

    Article  CAS  Google Scholar 

  65. Mathieu C, Thierry A, Wittmann J-C, Lotz B. Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Polym Phys. 2002;40:2504–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Multibase/Dow Corning (Saint-Laurent-du-Pont, France) for supplying the injection-molded samples and data on the processing conditions and physicochemical characteristics as well. Dr. P. Prèle from Multibase is particularly acknowledged for fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelheq Layachi or Hamid Satha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layachi, A., Makhlouf, A., Frihi, D. et al. Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc. J Therm Anal Calorim 138, 1081–1095 (2019). https://doi.org/10.1007/s10973-019-08262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08262-0

Keywords

Navigation