Skip to main content
Log in

Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization of the polyamide 66 (PA66) reinforced with 15 mass% glass fibers and/or 0.4 mass% carbon black has been the object of a thermal analysis by differential scanning calorimetry with various cooling rates ranging from 2 to 25 °C min−1. The modified Avrami’s equation, Ozawa’s theory and Mo’s method were applied to study the non-isothermal crystallization kinetics of neat PA66 and the PA66 composites. The activation energies of non-isothermal crystallization were calculated by Kissinger method. The results showed that the Mo’s method can successfully account for the overall non-isothermal crystallization kinetics for neat PA66 and PA66 composites. The modified Avrami’s method and Ozawa’s approach as well did not apply satisfactorily. It was also revealed that GF and CB could accelerate the crystallization rates of PA66. The combined effect of GF and CB was shown to be stronger than that of GF only in spite of rather low CB content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomason JL. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene. 6. The properties of injection moulded long fibre PP at high fibre content. Compos A. 2005;36:995–1003.

    Article  Google Scholar 

  2. Cayer-Barrioz J, Ferry L, Frihi D, Cavalier K, Seguela R, Vigier G. Microstructure and mechanical behavior of polyamide 66-precipitated calcium carbonate composites: influence of the particle surface treatment. J Appl Polym Sci. 2006;100:989–99.

    Article  CAS  Google Scholar 

  3. Frihi D, Masenelli-Varlot K, Vigier G, Satha H. Mixed percolating network and mechanical properties of polypropylene/talc composites. J Appl Polym Sci. 2009;114:3097–105.

    Article  CAS  Google Scholar 

  4. Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K. Non-isothermal crystallization kinetics and morphology of wollastonite-reinforced β-isotactic polypropylene composites. J Therm Anal Calorim. 2014;115:675–88.

    Article  CAS  Google Scholar 

  5. Rudzinski S, Häussler L, Harnisch C, Mäder E, Heinrich G. Glass fibre reinforced polyamide composites: thermal behaviour of sizings. Compos A. 2011;42:157–64.

    Article  Google Scholar 

  6. Thomason JL. Structure–property relationships in glass-reinforced polyamide. Part 1: the effects of fiber content. Polym Compos. 2006;27:552–62.

    Article  CAS  Google Scholar 

  7. Mouhmid B, Imad A, Benseddiq N, Benmedakhène S, Maazouz A. A study of the mechanical behaviour of a glass fibre reinforced polyamide 66: experimental investigation. Polym Test. 2006;25:544–52.

    Article  CAS  Google Scholar 

  8. Hsiao BS, Chang IY, Sauer BB. Isothermal crystallization kinetics of poly(ether-ketone-ketone) and its carbon-fiber-reinforced composites. Polymer. 1991;32:2799–805.

    Article  CAS  Google Scholar 

  9. Avella M, Della Volpe GD, Martuscelli E, Raimo M. Trans-crystallinity phenomena in a polypropylene/kevlar fiber system. I: influence of crystallization conditions. Polym Eng Sci. 1992;32:376–82.

    Article  CAS  Google Scholar 

  10. Reinsch VE, Rebenfeld L. The influence of fibers on the crystallization of poly(ethylene terephtalate) as related to processing of composites. Polym Compos. 1992;13:353–60.

    Article  CAS  Google Scholar 

  11. Thomason JL, van Rooyen AA. Trans-crystalline interface in thermoplastic composites. I. Influence of fiber type and crystallization temperature. J Mater Sci. 1992;27:889–96.

    Article  CAS  Google Scholar 

  12. Jonas A, Legras R. Crystallization and chain adsorption of poly(ether-ether-ketone) in discontinuous pitch-derived carbon finer composites. Polym Compos. 1993;14:491–502.

    Article  CAS  Google Scholar 

  13. Gresco AJ, Phillips PJ. The role of epitaxy in the development of morphology in carbon-fiber composites. J Adv Mater. 1994;25:51–60.

    Google Scholar 

  14. Schulz E, Kalinka G, Auersch W. Effect of trans-crystallization in carbon fiber reinforced poly(p-phenylene sulfide) composites on the interfacial shear strength investigated with the single fiber pull-out test. J Macromol Sci Phys. 1996;B35:527–46.

    Article  CAS  Google Scholar 

  15. Klein N, Marom G, Wachtel E. Microstructure of PA66 trans crystalline layers in carbon and aramid fiber reinforced composites. Polymer. 1996;24:5493–8.

    Article  Google Scholar 

  16. Klein N, Selivanski D, Marom G. The effects of a nucleating agent and of fibers on the crystallization of nylon 66 matrices. Polym Compos. 1995;16:189–97.

    Article  CAS  Google Scholar 

  17. Feldman AY, Gonzalez MF, Wachtel E, Moret MP, Marom G. Trans-crystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer. 2004;45:7239–45.

    Article  CAS  Google Scholar 

  18. Chabert B, Chauchard J, Cinquin J. Etude par DSC de la cristallisation non isotherme de matrices PA66 en presence de fibres de verre. Macromol Symp. 1987;9:99–111.

    Article  CAS  Google Scholar 

  19. Heiser JA, King JA, Konell JP, Sutter LL. Electrical conductivity of carbon-filled nylon 66. Adv Polym Technol. 2004;23:135–46.

    Article  CAS  Google Scholar 

  20. Chang L, Zhang Z, Zhang H, Schlarb AK. On the sliding wear of nanoparticle filled polyamide 66 composites. Compos Sci Technol. 2006;66:3188–98.

    Article  CAS  Google Scholar 

  21. Zhang GQ, Sun F, Gao LP, Wang LN, Shao M, Liu JQ. Thermodynamics properties and isothermal crystallization kinetics of carbon black/poly(ethylene terephthalate) composites. J Compos Mater. 2007;41:1477–85.

    Article  CAS  Google Scholar 

  22. Konell JP, King JA, Miskioglu I. Tensile modulus modeling of carbon-filled nylon 66 and polycarbonate-based resins. J Appl Polym Sci. 2003;90:1716–28.

    Article  CAS  Google Scholar 

  23. Yuan QA, Wate S, Misra RDK. Non-isothermal crystallization behavior of melt-intercalated polyethylene–clay nanocomposites. J Appl Polym Sci. 2006;102:3809–18.

    Article  CAS  Google Scholar 

  24. Jia Z, Zeng F, Yuan Q, Misra RDK. Carbon nanotube-induced structure and phase evolution in polymer-based nanocomposites crystallized at elevated pressures. Mater Sci Eng B. 2012;177:666–72.

    Article  CAS  Google Scholar 

  25. Li L, Li C, Ni C, Rong YL, Hsiao B. Structure and crystallization behavior of nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452–60.

    Article  CAS  Google Scholar 

  26. Göschel U, Lutz W, Davidson NC. The influence of a polymeric nucleating additive on the crystallization in glass fibre reinforced polyamide 6 composites. Compos Sci Technol. 2007;67:2606–15.

    Article  Google Scholar 

  27. Rhoades AM, Williams JL, Androsch R. Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim Acta. 2014;603:103–9.

    Article  Google Scholar 

  28. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Non-isothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta. 2015;606:66–76.

    Article  CAS  Google Scholar 

  29. Qiu S, Zheng Y, Zeng A, Guo Y, Li B. Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites. Polym Bull. 2011;67:1945–59.

    Article  CAS  Google Scholar 

  30. Hinrichsen G, Lux F. Crystallization kinetics of highly reinforced glass fibre/polyamide 6 composites. Polym Bull. 1990;24:79–86.

    Article  CAS  Google Scholar 

  31. Arroyo M, Lopez-Manchado MA, Avalos F. Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibres. Polymer. 1997;38:5587–93.

    Article  CAS  Google Scholar 

  32. Layachi A, Frihi D, Gherib S, Stoclet G, Masenelli-Varlot K, Satha H, Seguela R. Crystallization of glass-fiber-reinforced polyamide 66 composites: influence of glass-fiber content and carbon black (to be submitted).

  33. Avrami M. Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  34. Liu X, Wu Q. Non-isothermal crystallization behaviors of polyamide 66/clay nanocomposites. Eur Polym J. 2002;38:1383–9.

    Article  CAS  Google Scholar 

  35. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  36. Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  37. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene-terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  38. Zhang J, Chen S, Su J, Shi X, Jin J, Wang X, Xu Z. Non-isothermal crystallization kinetics and melting behavior of EAA with different acrylic acid content. J Therm Anal Calorim. 2009;97:959–67.

    Article  CAS  Google Scholar 

  39. Basavaraj E, Ramaraj B, Lee JH. Microstructure, thermal, physico-mechanical and tribological characteristics of molybdenum disulphide-reinforced polyamide 66/carbon black composites. Polym Eng Sci. 2013;53:1676–86.

    Article  CAS  Google Scholar 

  40. Ozawa T. Kinetics of non-isothermal crystallization. Polym J. 1971;12:150–8.

    Article  CAS  Google Scholar 

  41. Liu T, Mo Z, Zhang H. Non-isothermal crystallization behavior of a novel poly(aryl-ether-ketone). J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  42. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Non-isothermal crystallization kinetics and melting behavior of poly(butylene-terephthalate) composites based on different types of functional fillers. Thermochim Acta. 2014;58:41–53.

    Article  Google Scholar 

  43. Shi J, Yang X, Wang X, Lu L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym Test. 2010;29:596–602.

    Article  CAS  Google Scholar 

  44. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Professor K. Masenelli-Varlot (MATEIS, INSA Lyon, France) for assistance in the SEM experiments. The authors are also grateful to Solvay (Centre de Recherche de Saint Fons, France) for providing the materials of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Satha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Layachi, A., Frihi, D., Satha, H. et al. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim 124, 1319–1329 (2016). https://doi.org/10.1007/s10973-016-5286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5286-0

Keywords

Navigation