Skip to main content
Log in

Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influences of kaolin content, processing temperature, and shear stress on crystallization of all samples were investigated by differential scanning calorimetry (DSC). The crystallization activation energy calculated using Kissinger’s method displayed a decreasing trend with increasing kaolin content, processing temperature, and shear stress. A study of nucleation activity, which could indicate the influence of filler on polymer matrix, revealed that kaolin filler had a slight nucleation effect on polypropylene (PP) matrix. A thorough observation on nucleation effect also revealed that the incorporation of kaolin in tandem with increasing temperature and shear stress have contributed to successive heterogeneous nucleation in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ariffin A, Mansor AS, Jikan SS, Mohd. Ishak ZA. Mechanical, morphological, and thermal properties of polypropylene/kaolin composite. Part I. The effects of surface-treated kaolin and processing enhancement. Appl Polym Sci. 2008;108:3901–16.

    Article  CAS  Google Scholar 

  2. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  3. Leszczynska A, Pielichowski K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim. 2008;93(3):677–87.

    Article  CAS  Google Scholar 

  4. Gomes EVD, Visconte LLY, Pacheco EBAV. Thermal characterization of polypropylene/vermiculite composites. J Therm Anal Calorim. 2009;97:571–5.

    Article  CAS  Google Scholar 

  5. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, Jahanshahi M. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test. 2009;28:46–52.

    Article  CAS  Google Scholar 

  6. Hou Z, Wang K, Zhao P, Zhang Q, Yang C, Chen D, Du R, Fu Q. Structural orientation and tensile behavior in the extrusion-stretched sheets of polypropylene/multi-walled carbon nanotubes’ composite. Polymer. 2008;49:3582–9.

    Article  CAS  Google Scholar 

  7. Ruan WH, Mai YL, Wang XH, Rong MZ, Zhang MQ. Effects of processing conditions on properties of nano-SiO2/polypropylene composites fabricated by pre-drawing technique. Compos Sci Technol. 2007;67:2747–56.

    Article  CAS  Google Scholar 

  8. Tao Y, Mai K. Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2007;43:3538–49.

    Article  CAS  Google Scholar 

  9. Tao Y, Pan Y, Zhang Z, Mai K. Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in β-nucleated polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2008;44:1165–74.

    Article  CAS  Google Scholar 

  10. Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  CAS  Google Scholar 

  11. Modesti M, Lorenzetti A, Bon D, Besco S. Thermal behaviour of compatibilised polypropylene nanocomposite: effect of processing conditions. Polym Degrad Stab. 2006;91:672–80.

    Article  CAS  Google Scholar 

  12. Sun T, Chen F, Dong X, Zhou Y, Wang D, Han CC. Shear-induced orientation in the crystallization of an isotactic polypropylene nanocomposite. Polymer. 2009;50:2465–71.

    Article  CAS  Google Scholar 

  13. Jikan SS, Ariff ZM, Ariffin A. Influence of filler content and processing parameter on the crystallization behaviour of pp/kaolin composites. J Therm Anal Calorim. doi:10.1007/s10973-010-0782-0.

  14. Maity AK, Xavier SF. Rheological properties of ethylene–propylene block copolymer and epdm rubber blends using a torque rheometer. Eur Polym J. 1999;35:173–81.

    Article  CAS  Google Scholar 

  15. Sombatsompop N, Panapoy M. Effect of screw rotating speed on polymer melt temperature profiles in twin screw extruder. Mater Sci. 2000;35:6131–7.

    Article  CAS  Google Scholar 

  16. Elias L, Fenouillot F, Majeste JC, Cassagnau P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer. 2007;48:6029–40.

    Article  CAS  Google Scholar 

  17. Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–34.

    Article  CAS  Google Scholar 

  18. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.

    Article  CAS  Google Scholar 

  19. Li J, Zhou C, Gang W. Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite. Polym Test. 2003;22:217–23.

    Article  Google Scholar 

  20. Kim JY, Park HS, Kim SH. Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization. Polymer. 2006;47:1379–89.

    Article  CAS  Google Scholar 

  21. Zhao S, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49:2745–54.

    Article  CAS  Google Scholar 

  22. Zhao L, Li J, Guo S, Du Q. Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites. Polymer. 2006;47:2460–9.

    Article  CAS  Google Scholar 

  23. Ijaz M, Robinson M, Gibson AG. Cooling and crystallisation behaviour during vacuum-consolidation of commingled thermoplastic composites. Compos A Appl Sci Manuf. 2007;38:828–42.

    Article  Google Scholar 

  24. Ota WN, Amico SC, Satyanarayana KG. Studies on the combined effect of injection temperature and fiber content on the properties of polypropylene-glass fiber composites. Compos Sci Technol. 2005;65:873–81.

    Article  CAS  Google Scholar 

  25. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K. Kinetics study of cold-crystallization of poly(ethylene terephthalate) nanocomposites with multi-walled carbon nanotubes. Thermochim Acta. 2009;in press; corrected proof.

Download references

Acknowledgements

This study is supported by a research grant from the Ministry of Science, Technology and Environment, Malaysia (IRPA Grant No. 305/PBAHAN/6012908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ariffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariffin, A., Ariff, Z.M. & Jikan, S.S. Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim 103, 171–177 (2011). https://doi.org/10.1007/s10973-010-1013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1013-4

Keywords

Navigation