Skip to main content
Log in

Mineralogical and chemical investigation of Tunisian phosphate washing waste during calcination

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phosphate washing waste (PWW) is one of the wastes generated by the phosphate mine with a very high amount. This waste was investigated in this work to study the effect of the calcination of the PWW at four different temperatures 600 °C, 700 °C, 800 °C and 900 °C on its mineralogical and chemical composition. The samples were investigated by X-ray powder diffraction, Fourier transform infrared, differential scanning calorimetry and thermogravimetric analysis, solid-state magic angle spinning nuclear magnetic resonance of 29Si, 27Al and 31P and scanning electron microscope. The results show that the PWW presents a complex system and it suffers a significant change on its mineralogical and chemical composition after calcination. It reveals the presence of carbonate, natural zeolite, fluorapatite, quartz and clay. After calcination, the waste shows the disappearance of some of these phases and the appearance of others and some other phases remain steady.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CPG:

Gafsa Phosphate Company

XRD:

X-ray powder diffraction

DSC–TG:

Differential scanning calorimetry and thermogravimetric analysis

FTIR:

Fourier transform infrared

ATR:

Attenuated total reflectance

MAS-NMR:

Magic angle spinning nuclear magnetic resonance

PWW:

Phosphate washing waste

SEM:

Scanning electron microscope

References

  1. Ober JA. Mineral commodity summaries 2018. Report. Reston, VA; 2018.

  2. Krekeler MPS, Morton J, Lepp J, Tselepis CM, Samsonov M, Kearns LE. Mineralogical and geochemical investigation of clay-rich mine tailings from a closed phosphate mine, Bartow Florida, USA. Environ Geol. 2007;55(1):123–47. https://doi.org/10.1007/s00254-007-0971-8.

    Article  CAS  Google Scholar 

  3. Song Q, Li J, Zeng X. Minimizing the increasing solid waste through zero waste strategy. J Clean Prod. 2015;104:199–210. https://doi.org/10.1016/j.jclepro.2014.08.027.

    Article  Google Scholar 

  4. Yang Y, Wei Z, Chen Y-L, Li Y, Li X. Utilizing phosphate mine tailings to produce ceramisite. Constr Build Mater. 2017;155:1081–90. https://doi.org/10.1016/j.conbuildmat.2017.08.070.

    Article  CAS  Google Scholar 

  5. Cánovas CR, Macías F, Pérez-López R, Basallote MD, Millán-Becerro R. Valorization of wastes from the fertilizer industry: current status and future trends. J Clean Prod. 2018;174:678–90. https://doi.org/10.1016/j.jclepro.2017.10.293.

    Article  CAS  Google Scholar 

  6. Chraiti R, Raddaoui M, Hafiane A. Effluent water quality at phosphate mines in M’Dhilla, Tunisia and its potential environmental effects. Mine Water Environ. 2016;35(4):462–8. https://doi.org/10.1007/s10230-016-0400-x.

    Article  CAS  Google Scholar 

  7. Marzougui S, Sdiri A, Rekhiss F. Heavy metals’ mobility from phosphate washing effluents discharged in the Gafsa area (southwestern Tunisia). Arab J Geosci. 2016. https://doi.org/10.1007/s12517-016-2613-5.

    Article  Google Scholar 

  8. Boughzala K, Fattah N, Bouzouita K, Ben Hassine H. Etude minéralogique et chimique du phosphate naturel d’Oum El Khecheb (Gafsa, Tunisie). Revue science des matériaux, Laboratoire LARHYSS. 2015;6:11–29.

    Google Scholar 

  9. Gallala W, Saïdi M, el Hajii S, Zayani K, Gaied ME, Montacer M. Characterization and valorization of Tozeur-Nefta phosphate ore deposit (southwestern Tunisia). Procedia Eng. 2016;138:8–18.

    Article  CAS  Google Scholar 

  10. Galfati I, Sassi AB, Zaier A, Bouchardon JL, Bilal E, Joron J-L, et al. Geochemistry and mineralogy of Paleocene-Eocene Oum El Khecheb phosphorites (Gafsa-Metlaoui Basin) Tunisia. Geochem J. 2010;44(3):189–210.

    Article  CAS  Google Scholar 

  11. Elgharbi S, Horchani-Naifer K, Ferid M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations. J Therm Anal Calorim. 2015;119(1):265–71.

    Article  CAS  Google Scholar 

  12. Galai H, Sliman F. Mineral characterization of the Oum El Khacheb phosphorites (Gafsa-Metlaoui basin; S Tunisia). Arab J Chem. 2014. https://doi.org/10.1016/j.arabjc.2014.10.007.

    Article  Google Scholar 

  13. Mekki A, Awali A, Aloui F, Loukil S, Sayadi S. Characterization and toxicity assessment of wastewater from rock phosphate processing in Tunisia. Mine Water Environ. 2017;36(4):502–7.

    Article  CAS  Google Scholar 

  14. Ahmed AH, Tlili A, Affouri H. ETUDE MINÉRALOGIQUE ET ORGANO-GEOCHIMIQUE DU FACIÈS PHOSPHATÉ YPRESIEN DU SUD OUEST TUNISIEN.

  15. Jellali S, Wahab MA, Hassine RB, Hamzaoui AH, Bousselmi L. Adsorption characteristics of phosphorus from aqueous solutions onto phosphate mine wastes. Chem Eng J. 2011;169(1–3):157–65. https://doi.org/10.1016/j.cej.2011.02.076.

    Article  CAS  Google Scholar 

  16. Jellali S, Wahab MA, Anane M, Riahi K, Bousselmi L. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. J Hazard Mater. 2010;184(1–3):226–33. https://doi.org/10.1016/j.jhazmat.2010.08.026.

    Article  CAS  PubMed  Google Scholar 

  17. Hakkou R, Benzaazoua M, Bussière B. Valorization of phosphate waste rocks and sludge from the moroccan phosphate mines: challenges and perspectives. Procedia Eng. 2016;138:110–8. https://doi.org/10.1016/j.proeng.2016.02.068.

    Article  CAS  Google Scholar 

  18. Zhang P. Comprehensive recovery and sustainable development of phosphate resources. Procedia Eng. 2014;83:37–51. https://doi.org/10.1016/j.proeng.2014.09.010.

    Article  CAS  Google Scholar 

  19. Baccour H, Koubaa H, Baklouti S (eds). Phosphate sludge from Tunisian phosphate mines: valorisation as ceramics products. In: Euro-mediterranean conference for environmental integration; 2017. Springer.

  20. Loutou M, Hajjaji M, Mansori M, Favotto C, Hakkou R. Heated blends of clay and phosphate sludge: microstructure and physical properties. J Asian Ceram Soc. 2018;4(1):11–8. https://doi.org/10.1016/j.jascer.2015.10.003.

    Article  Google Scholar 

  21. Chen Q, Zhang Q, Fourie A, Xin C. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill. J Environ Manag. 2017;201:19–27. https://doi.org/10.1016/j.jenvman.2017.06.027.

    Article  CAS  Google Scholar 

  22. Loutou M, Hajjaji M, Mansori M, Favotto C, Hakkou R. Phosphate sludge: thermal transformation and use as lightweight aggregate material. J Environ Manag. 2013;130:354–60. https://doi.org/10.1016/j.jenvman.2013.09.004.

    Article  CAS  Google Scholar 

  23. Rashed MN, Mohamed AR, Awadallah MA. Chemically activated phosphate slime as adsorbent for heavy metals removal from polluted water. Int J Environ Waste Manag. 2015;16(2):145–65.

    Article  CAS  Google Scholar 

  24. Khemakhem M, Khemakhem S, Ayedi S, Amar RB. Study of ceramic ultrafiltration membrane support based on phosphate industry subproduct: application for the cuttlefish conditioning effluents treatment. Ceram Int. 2011;37(8):3617–25. https://doi.org/10.1016/j.ceramint.2011.06.020.

    Article  CAS  Google Scholar 

  25. Khemakhem M, Khemakhem S, Ayedi S, Cretin M, Ben Amar R. Development of an asymmetric ultrafiltration membrane based on phosphates industry sub-products. Ceram Int. 2015;41(9):10343–8. https://doi.org/10.1016/j.ceramint.2015.05.101.

    Article  CAS  Google Scholar 

  26. Dabbebi R, Barroso de Aguiar JL, Camões A, Samet B, Baklouti S. Effect of the calcinations temperatures of phosphate washing waste on the structural and mechanical properties of geopolymeric mortar. Constr Build Mater. 2018;185:489–98. https://doi.org/10.1016/j.conbuildmat.2018.07.045.

    Article  CAS  Google Scholar 

  27. Moukannaa S, Loutou M, Benzaazoua M, Vitola L, Alami J, Hakkou R. Recycling of phosphate mine tailings for the production of geopolymers. J Clean Prod. 2018;185:891–903. https://doi.org/10.1016/j.jclepro.2018.03.094.

    Article  CAS  Google Scholar 

  28. Liu X, Zhang Y, Liu T, Cai Z, Sun K. Characterization and separation studies of a fine sedimentary phosphate ore slime. Minerals. 2017;7(6):94. https://doi.org/10.3390/min7060094.

    Article  CAS  Google Scholar 

  29. Claverie M, Martin F, Tardy JP, Cyr M, De Parseval P, Grauby O, et al. Structural and chemical changes in kaolinite caused by flash calcination: formation of spherical particles. Appl Clay Sci. 2015;114:247–55. https://doi.org/10.1016/j.clay.2015.05.031.

    Article  CAS  Google Scholar 

  30. Chotoli FF, Quarcioni VA, Lima SS, Ferreira JC, Ferreira GM. Clay activation and color modification in reducing calcination process: development in lab and industrial scale. Calcined Clays for Sustainable Concrete. Berlin: Springer; 2015. p. 479–86.

    Book  Google Scholar 

  31. Ahmed AH, Tlili A, Affouri H. ETUDE MINÉRALOGIQUE ET ORGANO-GEOCHIMIQUE DU FACIÈS PHOSPHATÉ YPRESIEN DU SUD OUEST TUNISIEN; 2008.

  32. Gelves JF, Gallego GS, Marquez MA. Mineralogical characterization of zeolites present on basaltic rocks from Combia geological formation, La Pintada (Colombia). Microporous Mesoporous Mater. 2016;235:9–19. https://doi.org/10.1016/j.micromeso.2016.07.035.

    Article  CAS  Google Scholar 

  33. Christidis G, Moraetis D, Keheyan E, Akhalbedashvili L, Kekelidze N, Gevorkyan R, et al. Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Appl Clay Sci. 2003;24(1–2):79–91.

    Article  CAS  Google Scholar 

  34. Elgharbi S, Horchani-Naifer K, Férid M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations. J Therm Anal Calorim. 2014;119(1):265–71. https://doi.org/10.1007/s10973-014-4132-5.

    Article  CAS  Google Scholar 

  35. Yan W, Liu D, Tan D, Yuan P, Chen M. FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochim Acta A Mol Biomol Spectrosc. 2012;97:1052–7. https://doi.org/10.1016/j.saa.2012.07.085.

    Article  CAS  PubMed  Google Scholar 

  36. Sreenivasan H, Kinnunen P, Heikkinen E-P, Illikainen M. Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose. Miner Eng. 2017;113:47–54. https://doi.org/10.1016/j.mineng.2017.08.003.

    Article  CAS  Google Scholar 

  37. Langner R, Fechtelkord M. Aluminium ordering and clustering in synthetic phlogopite: OH/F influence on the Al-content of phlogopite studied by NMR spectroscopy. Eur J Mineral. 2012;24(5):798–814. https://doi.org/10.1127/0935-1221/2012/0024-2227.

    Article  CAS  Google Scholar 

  38. Traoré K, Kabré TS, Blanchart P. Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceram Int. 2003;29(4):377–83. https://doi.org/10.1016/s0272-8842(02)00148-7.

    Article  Google Scholar 

  39. Ptáček P, Opravil T, Šoukal F, Havlica J, Holešinský R. Kinetics and mechanism of formation of gehlenite, Al–Si spinel and anorthite from the mixture of kaolinite and calcite. Solid State Sci. 2013;26:53–8. https://doi.org/10.1016/j.solidstatesciences.2013.09.014.

    Article  CAS  Google Scholar 

  40. Ostrooumov M, Cappelletti P, de’Gennaro R. Mineralogical study of zeolite from New Mexican deposits (Cuitzeo area, Michoacan, Mexico). Appl Clay Sci. 2012;55:27–35. https://doi.org/10.1016/j.clay.2011.09.011.

    Article  CAS  Google Scholar 

  41. Frinisrasra N, Srasra E. Effect of heating on palygorskite and acid treated palygorskite properties. Элeктpoннaя oбpaбoткa мaтepиaлoв. 2008;44(1):43–9.

    Google Scholar 

  42. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F. Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci. 2015;108:94–101. https://doi.org/10.1016/j.clay.2015.01.028.

    Article  CAS  Google Scholar 

  43. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials. 2007;28(19):3043–54. https://doi.org/10.1016/j.biomaterials.2007.02.028.

    Article  CAS  PubMed  Google Scholar 

  44. Fernández Carrasco L, Torrens Martín D, Morales L, Martínez Ramírez S. Infrared spectroscopy in the analysis of building and construction materials. Rijeka: InTech; 2012.

    Book  Google Scholar 

  45. Ramasamy V, Anand P, Suresh G. Synthesis and characterization of polymer-mediated CaCO3 nanoparticles using limestone: a novel approach. Adv Powder Technol. 2018;29(3):818–34. https://doi.org/10.1016/j.apt.2017.12.023.

    Article  CAS  Google Scholar 

  46. Bishop JL, Lane MD, Dyar MD, King SJ, Brown AJ, Swayze GA. Spectral properties of Ca-sulfates: gypsum, bassanite, and anhydrite. Am Miner. 2014;99(10):2105–15. https://doi.org/10.2138/am-2014-4756.

    Article  Google Scholar 

  47. Yin Y, Yin J, Zhang W, Tian H, Hu Z, Ruan M, et al. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. J Energy Inst. 2018;91(3):389–96. https://doi.org/10.1016/j.joei.2017.02.003.

    Article  CAS  Google Scholar 

  48. Xavier KCM, Santos MSF, Osajima JA, Luz AB, Fonseca MG, Silva Filho EC. Thermally activated palygorskites as agents to clarify soybean oil. Appl Clay Sci. 2016;119:338–47. https://doi.org/10.1016/j.clay.2015.10.037.

    Article  CAS  Google Scholar 

  49. Burzo E. Heulandite and stilbite groups of tectosilicates. In: Wijn HPJ, editor. Datasheet from Landolt-Börnstein—Group III condensed matter: “Tectosilicates” in SpringerMaterials, vol. 27I6γ. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-30612-9_2.

    Chapter  Google Scholar 

  50. Chmielarz L, Kowalczyk A, Michalik M, Dudek B, Piwowarska Z, Matusiewicz A. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Appl Clay Sci. 2010;49(3):156–62. https://doi.org/10.1016/j.clay.2010.04.020.

    Article  CAS  Google Scholar 

  51. Pan X, Zhang D, Wu Y, Yu H. Synthesis and characterization of calcium aluminate compounds from gehlenite by high-temperature solid-state reaction. Ceram Int. 2018;44(12):13544–50. https://doi.org/10.1016/j.ceramint.2018.04.186.

    Article  CAS  Google Scholar 

  52. Shi T, Gao Y, Corr DJ, Shah SP. FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials. Adv Cem Res. 2018. https://doi.org/10.1680/jadcr.16.00167.

    Article  Google Scholar 

  53. Maheswaran S, Kalaiselvam S, Saravana Karthikeyan SKS, Kokila C, Palani GS. β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem Concr Compos. 2016;66:57–65. https://doi.org/10.1016/j.cemconcomp.2015.11.008.

    Article  CAS  Google Scholar 

  54. Daghmehchi M, Rathossi C, Omrani H, Emami M, Rahbar M. Mineralogical and thermal analyses of the Hellenistic ceramics from Laodicea Temple, Cement. Appl Clay Sci. 2018;162:146–54. https://doi.org/10.1016/j.clay.2018.06.007.

    Article  CAS  Google Scholar 

  55. Sharma SK, Simons B, Yoder H. Raman study of anorthite, calcium Tschermak’s pyroxene, and gehlenite in crystalline and glassy states. Am Miner. 1983;68(11–12):1113–25.

    CAS  Google Scholar 

  56. Wijn H. Tectosilicates. Landolt Börnstein; 2011(27).

  57. Smith M, Mackenzie K. Multinuclear solid state NMR of inorganic materials. Pergamon Materials Series. New York: Elsevier; 2002.

    Google Scholar 

  58. Ashbrook SE, Dawson DM. NMR spectroscopy of minerals and allied materials. Nuclear Magn Reson. 2016;45:1.

    Article  CAS  Google Scholar 

  59. Rhouta B, Zatile E, Bouna L, Lakbita O, Maury F, Daoudi L, et al. Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco). Phys Chem Miner. 2013;40(5):411–24. https://doi.org/10.1007/s00269-013-0579-3.

    Article  CAS  Google Scholar 

  60. Lippmaa E, Maegi M, Samoson A, Tarmak M, Engelhardt G. Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy. J Am Chem Soc. 1981;103(17):4992–6.

    Article  CAS  Google Scholar 

  61. Fang Y, Chang J. Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing. J Therm Anal Calorim. 2017;129(2):681–9. https://doi.org/10.1007/s10973-017-6165-z.

    Article  CAS  Google Scholar 

  62. Sánchez-Herrero MJ, Fernández-Jiménez A, Palomo Á, Klein L. Alkaline hydration of C2S and C3S. J Am Ceram Soc. 2016;99(2):604–11. https://doi.org/10.1111/jace.13985.

    Article  CAS  Google Scholar 

  63. Walkley B, San Nicolas R, Sani M-A, Bernal SA, van Deventer JSJ, Provis JL. Structural evolution of synthetic alkali-activated CaO–MgO–Na2O–Al2O3–SiO2 materials is influenced by Mg content. Cem Concr Res. 2017;99:155–71. https://doi.org/10.1016/j.cemconres.2017.05.006.

    Article  CAS  Google Scholar 

  64. Florian P, Veron E, Green TFG, Yates JR, Massiot D. Elucidation of the Al/Si ordering in gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy/quantum chemical calculations. Chem Mater. 2012;24(21):4068–79. https://doi.org/10.1021/cm3016935.

    Article  CAS  Google Scholar 

  65. Lee NK, Koh KT, An GH, Ryu GS. Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int. 2017;43(2):2471–80. https://doi.org/10.1016/j.ceramint.2016.11.042.

    Article  CAS  Google Scholar 

  66. Allu AR, Balaji S, Tulyaganov DU, Mather GC, Margit F, Pascual MJ, et al. Understanding the formation of CaAl2Si2O8 in melilite-based glass-ceramics: combined diffraction and spectroscopic studies. ACS Omega. 2017;2(9):6233–43. https://doi.org/10.1021/acsomega.7b00598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brus J, Abbrent S, Kobera L, Urbanova M, Cuba P. Advances in 27Al MAS NMR studies of geopolymers. Annu Rep NMR Spectrosc. 2016;88:79–147. https://doi.org/10.1016/bs.arnmr.2015.11.001.

    Article  CAS  Google Scholar 

  68. Rusmin R, Sarkar B, Biswas B, Churchman J, Liu Y, Naidu R. Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl Clay Sci. 2016;134:95–102. https://doi.org/10.1016/j.clay.2016.07.012.

    Article  CAS  Google Scholar 

  69. Mozgawa W, Fojud Z, Handke M, Jurga S. MAS NMR and FTIR spectra of framework aluminosilicates. J Mol Struct. 2002;614(1–3):281–7.

    Article  CAS  Google Scholar 

  70. Ayadi I, Ayed FB. Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride. J Mech Behav Biomed Mater. 2016;60:568–80. https://doi.org/10.1016/j.jmbbm.2016.03.020.

    Article  CAS  PubMed  Google Scholar 

  71. Ayed FB, Bouaziz J. Sintering of tricalcium phosphate–fluorapatite composites by addition of alumina. Ceram Int. 2008;34(8):1885–92. https://doi.org/10.1016/j.ceramint.2007.07.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the both universities for their support. The phosphate washing waste sample was supplied by the Gafsa Phosphate Company “CPG Tunisia”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dabbebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbebi, R., de Aguiar, J.L.B., Samet, B. et al. Mineralogical and chemical investigation of Tunisian phosphate washing waste during calcination. J Therm Anal Calorim 137, 1827–1840 (2019). https://doi.org/10.1007/s10973-019-08057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08057-3

Keywords

Navigation