Skip to main content
Log in

Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a study on rapid hardening behaviors of β-C2S by accelerated carbonation curing. β-C2S cubes compacted at various molding pressures were subjected to different CO2 concentration for accelerated carbonation curing. The CO2 uptake and microstructure changes were analyzed by thermogravimetric analysis (TG), QXRD, FT-IR and MAS-NMR. The results indicated that CO2 uptake was affected by molding pressure and CO2 concentration seriously. TG analysis indicated that the carbonation reaction was rapid in the first hour. The carbonation degree reached 21.6% and giving a compressive strength of 85.7 MPa after 6 h carbonation in 99.9% CO2 concentration. And it showed a much less carbonation degree in 20.0% CO2. Calcite, vaterite and amorphous silica-rich phase formed in the carbonation progress. The FT-IR and NMR analysis indicated β-C2S was decalcified to C–S–H gel and further decalcified to formation of an amorphous silica gel composed of Q 3 and Q 4 silicate tetrahedral. The chain length of C–S–H gel increased from to 2.67 to 6.36 with prolonged carbonation time, showing a lower C/S ratio and higher polymerization and also resulting in a lower C–S–H content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gregg JS, Andres RJ, Marland G. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett. 2008;35(8):L08806.

    Article  Google Scholar 

  2. Mabudo GM, Lee S, Kang S, et al. Physical properties and carbon dioxide capture of synthetic gamma-C2S cement composites in the early days of curing. Mag Concr Res. 2016;68(21):1079–84.

    Article  Google Scholar 

  3. Carrasco-Maldonado F, Spörl R, Fleiger K, et al. Oxy-fuel combustion technology for cement production—state of the art research and technology development. Int J Greenh Gas Control. 2016;45:189–99.

    Article  CAS  Google Scholar 

  4. Maheswaran S, Kalaiselvam S, Saravana Karthikeyan SKS, et al. β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem Concr Compos. 2016;66:57–65.

    Article  CAS  Google Scholar 

  5. Gong Y, Fang Y. Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method. Constr Build Mater. 2016;111:175–81.

    Article  CAS  Google Scholar 

  6. Staněk T, Sulovský P. Active low-energy belite cement. Cem Concr Res. 2015;68:203–10.

    Article  Google Scholar 

  7. Kacimi L, Simon-Masseron A, Salem S, et al. Synthesis of belite cement clinker of high hydraulic reactivity. Cem Concr Res. 2009;39(7):559–65.

    Article  CAS  Google Scholar 

  8. Campillo I, Guerrero A, Dolado JS, et al. Improvement of initial mechanical strength by nanoalumina in belite cements. Mater Lett. 2007;61(8):1889–92.

    Article  CAS  Google Scholar 

  9. Bodor M, Santos RM, Kriskova L, et al. Susceptibility of mineral phases of steel slags towards carbonation: mineralogical, morphological and chemical assessment. Eur J Minneral. 2013;25(4):533–49.

    Article  CAS  Google Scholar 

  10. Morandeau A, Thiéry M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash. Cem Concr Res. 2015;67:226–36.

    Article  CAS  Google Scholar 

  11. Jang JG, Lee HK. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem Concr Res. 2016;82:50–7.

    Article  CAS  Google Scholar 

  12. Ghouleh Z, Guthrie RIL, Shao Y. High-strength KOBM steel slag binder activated by carbonation. Constr Build Mater. 2015;99:175–83.

    Article  Google Scholar 

  13. Šavija B, Luković M. Carbonation of cement paste: understanding, challenges, and opportunities. Constr Build Mater. 2016;117:285–301.

    Article  Google Scholar 

  14. Ashraf W. Carbonation of cement-based materials: challenges and opportunities. Constr Build Mater. 2016;120:558–70.

    Article  CAS  Google Scholar 

  15. Bertos MF, Simons S, Hills CD, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater. 2004;112(3):193–205.

    Article  Google Scholar 

  16. Shao Y, Mirza MS, Wu X. CO2 sequestration using calcium-silicate concrete. Can J Civil Eng. 2006;33(6):776–84.

    Article  CAS  Google Scholar 

  17. Chang J, Li Y, Cao M, et al. Influence of magnesium hydroxide content and fineness on the carbonation of calcium hydroxide. Constr Build Mater. 2014;55:82–8.

    Article  Google Scholar 

  18. Rostami V, Shao Y, Boyd AJ, et al. Microstructure of cement paste subject to early carbonation curing. Cem Concr Res. 2012;42(1):186–93.

    Article  CAS  Google Scholar 

  19. Huijgen WJ, Witkamp G, Comans RN. Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol. 2005;39(24):9676–82.

    Article  CAS  Google Scholar 

  20. Mo L, Panesar DK. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cem Concr Res. 2012;42(6):769–77.

    Article  CAS  Google Scholar 

  21. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, et al. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J Sol-Gel Sci Technol. 2008;45(1):63–72.

    Article  Google Scholar 

  22. Ashraf W, Olek J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. J Mater Sci. 2016;51(13):6173–91.

    Article  CAS  Google Scholar 

  23. Mollah M, Yu W, Schennach R, et al. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res. 2000;30(2):267–73.

    Article  CAS  Google Scholar 

  24. Lodeiro IG, Fernández-Jimenez A, Palomo A, et al. Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium. Cem Concr Res. 2010;40(1):27–32.

    Article  Google Scholar 

  25. Puertas F, Palacios M, Manzano H, et al. A model for the CASH gel formed in alkali-activated slag cements. J Eur Ceram Soc. 2011;31(12):2043–56.

    Article  CAS  Google Scholar 

  26. Pérez G, Guerrero A, Gaitero JJ, et al. Structural characterization of C–S–H gel through an improved deconvolution analysis of NMR spectra. J Mater Sci. 2014;49(1):142–52.

    Article  Google Scholar 

  27. Sevelsted TF, Skibsted J. Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res. 2015;71:56–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by National Natural Science Foundation of China (51172096) and Equipment Open Sharing Test Fund of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Chang, J. Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing. J Therm Anal Calorim 129, 681–689 (2017). https://doi.org/10.1007/s10973-017-6165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6165-z

Keywords

Navigation