Skip to main content
Log in

Cross-linked PMMA-based bifunctional amino derivatives

An experimental and DFT study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main purpose of the present study is to investigate the role of 1,12-diaminododecane and 4,4′-diaminobiphenyl, as bifunctional amino derivatives, on the properties of poly(methyl methacrylate) (PMMA). Cross-linked PMMA derivatives of different degrees (2, 5, 10, 20, 30, 50, and 70 mass%) were synthesized by the interaction of neat PMMA with these two cross-linking agents through a polycondensation technique. FT-IR probes the possible interaction between the carbonyl (C=O) group of PMMA and the amino group of the diamine compounds. The change in the degree of crystallinity from one polymer to another is affected by the ratio and type of cross-linking. The surface morphology is dramatically changed by increasing the degree of cross-linking as evidenced from the SEM images. A major mass loss between 209 and 471 °C was observed from the TG curve of C-PMMA-H2, whereas C-PMMA-ph2 showed a major mass loss between 223 and 538 °C. A significant change in the thermal degradation behavior of cross-linked polymers was investigated at high cross-linking degrees. All products showed a final decomposition temperature (FDT) higher than pure PMMA. Considering the best result, FDT increased from 390 °C for pure PMMA to 577 °C for C-PMMA-H4 and 607 °C for C-PMMA-ph7. Moreover, a theoretical thermochemical analysis of the monomeric cross-linked isodesmic reaction was performed using density functional theory (DFT). The heat of formation of reactants and products was calculated and analyzed. The study, also, showed that the reactions are endothermic and spontaneous in the reverse direction at all temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ishizaki FS. Machida, Horie K. Photocurrent in and miscibility of poly (N-vinylcarbazole)/poly (methyl methacrylate) blends. Polym Bull. 2001;46(2–3):197–204.

    Article  CAS  Google Scholar 

  2. Nie ZG, Lim KS, Jang WY, Lee HY, Lee MK, Kabayashi T. Multilayered optical bit storage in Sm (DBM) 3Phen-doped poly (methyl methacrylate) read out by fluorescence and reflection modes. J Phys D Appl Phys. 2010;43(48):485101.

    Article  Google Scholar 

  3. Passirani C, Barratt G, Devissaguet J-P, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly (methyl methacrylate). Pharm Res. 1998;15(7):1046–50.

    Article  CAS  Google Scholar 

  4. Zhao K, Cheng Z, Zhang Z, Zhu J, Zhu X. Synthesis of fluorescent poly (methyl methacrylate) via AGET ATRP. Polym Bull. 2009;63(3):355–64.

    Article  CAS  Google Scholar 

  5. Yeh S-L, Zhu C-Y, Kuo S-W. Transparent heat-resistant PMMA copolymers for packing light-emitting diode materials. Polymers. 2015;7(8):1379–88.

    Article  CAS  Google Scholar 

  6. Yvonne T, Zhang C, Zhang C, Omollo E, Ncube S. Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose. 2014;21(4):2811–8.

    Article  CAS  Google Scholar 

  7. Pareo P, De Gregorio GL, Manca M, Pianesi MS, De Marco L, Cavallaro F, Mari M, Pappadà S, Ciccarella G, Gigli G. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces. J Colloid Interface Sci. 2011;363(2):668–75.

    Article  CAS  Google Scholar 

  8. Zhong L-B, Yin J, Zheng Y-M, Liu Q, Cheng X-X, Luo F-H. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem. 2014;86(13):6262–7.

    Article  CAS  Google Scholar 

  9. Theerthagiri J, Senthil RA, Buraidah MH, Madhavan J, Arof AK. Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics. 2015;21(10):2889–96.

    Article  CAS  Google Scholar 

  10. Kang W-M, Ma X-M, Hu M, Jia Z-X, Liu H, Cheng B-W. Self-templating synthesis of a fluorescent porphyrin doped poly (methyl methacrylate) nano-array and its HCl gas sensing properties. Analytical Methods. 2016;8(35):6489–93.

    Article  CAS  Google Scholar 

  11. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR. Handbook of polymers. 4th ed. New York: Wiley; 1999.

    Google Scholar 

  12. Maitra J, Shukla VK. Cross-linking in hydrogels-a review. Am J Polym Sci. 2014;4(2):25–31.

    CAS  Google Scholar 

  13. Hussein MA, El-Shishtawy RM, Abu-Zied BM, Asiri AM. The impact of cross-linking degree on the thermal and texture behavior of poly (methyl methacrylate). J Therm Anal Calorimet. 2016;124(2):709–17.

    Article  CAS  Google Scholar 

  14. Zsoldos GE, Kollár M. Structural analysis of polyolefin-poly(methyl methacrylate) blends. J Therm Anal Calorimet. 2015;119(1):63–72.

    Article  CAS  Google Scholar 

  15. Demirci G, Podkościelna B, Bartnicki A, Mergo P, Gil M, Çetinkaya O, Gawdzik B. Copolymerization and thermal study of the new methacrylate derivative of 2,4,6-trichlorophenol. J Therm Anal Calorimet. 2017;127(3):2263–71.

    Article  CAS  Google Scholar 

  16. Qiu X, Lu L, Han P, Tang G, Song G. Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell. J Therm Anal Calorim. 2016;124(3):1291–9.

    Article  CAS  Google Scholar 

  17. Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.

    Article  CAS  Google Scholar 

  18. Kulkarni PV, Keshavayya J. Chitosan Sodium alginate biodegradable interpenetrating polymer network (IPN) beads for delivery of ofloxacin hydrochloride. Int J Pharm Pharm Sci. 2010;2(2):77–82.

    CAS  Google Scholar 

  19. Zhang M, Wang R, Xiang T, Zhao W-F, Zhao S-C. Preparation, characterization and application of poly (sodium p-styrenesulfonate)/poly (methyl methacrylate) particles. J Ind Eng Chem. 2016;34:415–21.

    Article  CAS  Google Scholar 

  20. Khalid SH, Qadir MI, Massud A, Ali M, Rasool MH. Effect of degree of cross-linking on swelling and drug release behaviour of poly (methyl methacrylate-co-itaconic acid)[P (MMA/IA)] hydrogels for site specific drug delivery. J Drug Deliv Sci Technol. 2009;19(6):413–8.

    Article  CAS  Google Scholar 

  21. Wang Z, Liu H, Cui H, Zhang M, Zhang Z. A cross-linked and swelling polymer as an effective solid acid catalyst. Ind Eng Chem Res. 2015;54(29):7219–25.

    Article  CAS  Google Scholar 

  22. Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22(6):511–21.

    Article  CAS  Google Scholar 

  23. Balamurugan A, Kannan S, Selvaraj V, Rajeswari S. Development and spectral characterization of poly (methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater Artif Organs. 2004;18(1):41–5.

    Google Scholar 

  24. Singho ND, Lah NAC, Johan MR, Ahmad R. FTIR studies on silver-poly (methylmethacrylate) nanocomposites via in situ polymerization technique. Int J Electrochem Sci. 2012;7:5596.

    CAS  Google Scholar 

  25. Han G, Huan S, Han J, Zhang Z, Wu Q. Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites. Materials. 2013;7(1):16–29.

    Article  Google Scholar 

  26. Odian G. Principles of polymerization. 4th ed. New York: Wiley; 2004.

    Book  Google Scholar 

  27. Shobhana E. X-ray diffraction and UV-visible studies of PMMA thin films. Int J Mod Eng Res. 2012;2(3):1092–5.

    Google Scholar 

  28. Brkovic DV, Pavlovic VB, Pavlovic VP, Obradovic N, Mitric M, Stevanovic S, Vlahovic B, Uskokovic PS, Marinkovic AD. Structural properties of the multiwall carbon nanotubes/poly(methyl methacrylate) nanocomposites: effect of the multiwall carbon nanotubes covalent functionalization. Polym Compos. 2017;38(S1):E472–E489.

    Article  CAS  Google Scholar 

  29. Hussein MA, Asiri AM, Aly KI. New polyamides and polyoxazoles based on diphenyl ether segments in the polymers’ backbone. Int J Polym Mater. 2012;61(2):154–75.

    Article  CAS  Google Scholar 

  30. Hatanaka LC, Ahmed L, Sachdeva S, Wang Q, Cheng Z, Mannan MS. Thermal degradation and flammability of nanocomposites composed of silica cross-linked to poly (methyl methacrylate). Plast Rubber Compos. 2016;45(9):375–81.

    Article  CAS  Google Scholar 

  31. Jiang S, Gui Z, Hu Y, Zhou K, Dong Y, Shi Y. The intercalation of poly (methyl methacrylate)/aluminophosphate nanocomposites and the properties improvement. Mater Chem Phys. 2013;141(1):95–100.

    Article  CAS  Google Scholar 

  32. Peterson JD, Vyazovkin S, Wight CA. Stabilizing effect of oxygen on thermal degradation of poly (methyl methacrylate). Macromol Rapid Commun. 1999;20(9):480–3.

    Article  CAS  Google Scholar 

  33. Hussein MA. Eco-friendly polythiophene(keto-amine)s based on cyclopentanone moiety for environmental remediation. J Polym Environ. 2018;26(3):1194–205.

    Article  CAS  Google Scholar 

  34. Aly KI, Hussein MA. New polymer syntheses part: 58. Synthesis, characterization and corrosion inhibitive properties of new thiazole based polyamides containing diarylidenecyclohexanone moiety. Chin J Polym Sci. 2015;33(1):1–13.

    Article  CAS  Google Scholar 

  35. Hussein MA, Marwany H, Alamry K, Asiri AM, El-Daly SA. Surface selectivity competition of newly synthesized polyarylidene(keto-amine)s polymers toward different metal ions. J Appl Polym Sci. 2014;131(19):40873 (1-10).

    Article  Google Scholar 

  36. Hussein MA, Rahman MM, Asiri AM. Novel facial conducting polyamide-based dithiophenylidene cyclyhexanone moiety utilized for selective Cu2+ sensing. Polym Plast Technol Eng. 2018;57(8):812–25.

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J. Fox DJ gaussian 09. Wallingford: Gaussian Inc; 2009.

    Google Scholar 

  38. Dennington R, Keith T, Millam J. GaussView. Version 5, vol Shawnee Mission. Semichem. Inc., KS. 2009.

  39. Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1):51–7.

    Article  CAS  Google Scholar 

  40. Chase MW, Davies CA Jr, Downey JR, Frurip DJ Jr, McDonald RA, Syverud AN. JANAF thermochemical table third edition. J Phys Chem Ref. Data. 1985;14(Suppl. No):1.

    CAS  Google Scholar 

  41. Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys. 1984;80(7):3265–9.

    Article  CAS  Google Scholar 

  42. Curtiss LA, Raghavachar K, Redfern PC, Pople JA. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys. 1997;106(3):1063–79.

    Article  CAS  Google Scholar 

  43. Gordon MS, Boatz JA. Predicted heats of formation for methylsilylene and dimethylsilylene. Organometallics. 1989;8:1978–80.

    Article  CAS  Google Scholar 

  44. Qiua L, Gong X, Zheng J, Xiao H. Theoretical studies on polynitro-1,3-bishomopentaprismanes as potential high energy density compounds. J Hazard Mater. 2009;166:931–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, M.A., Albeladi, H.K., El-Shishtawy, R.M. et al. Cross-linked PMMA-based bifunctional amino derivatives. J Therm Anal Calorim 134, 1715–1728 (2018). https://doi.org/10.1007/s10973-018-7764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7764-z

Keywords

Navigation