Skip to main content
Log in

The impact of cross-linking degree on the thermal and texture behavior of poly(methyl methacrylate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The presented study was performed to examine the effect of chemical cross-linking on the properties of poly(methyl methacrylate) polymer. Chemically cross-linked PMMA based on aliphatic or aromatic spacers has been synthesized using solution polycondensation method. Cross-linked PMMA derivatives of different ratios were prepared by the interaction of PMMA with 1,6-diaminohexane or p-phenylenediamine as cross-linking agent using dry THF as solvent. The degree of cross-linking has been controlled by different amount of added diamine compound: 5, 10, 20 and 30 mass%. The new cross-linked polymers were characterized by various characterization tools: Fourier transform infrared spectroscopy (FT-IR), and thermal analysis including thermogravimetric analysis, and X-ray diffraction analysis. Furthermore, the morphological features were tested by studying the surface changes using field emission scanning electron microscopy (FE-SEM). This study was aimed to investigate the effect of modified chemical structure on the surface of the cross-linked polymer. The FT-IR results indicated that the PMMA was interacted with selected diamine in chemical way. The degree of crystallinity was changed from polymer to another depending on the cross-linking type and ratio. FE-SEM results showed that controlled designed micropores were obtained after cross-linking with aromatic spacer. The final shape and size of these pores were completely depending on the degree of cross-linking.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behlau I, Mukherjee K, Todani A, Tisdale AS, Cade F, Wang L, Leonard EM, Zakka FR, Gilmore MS, Jakobiec FA, Dohlman CH, Klibanov AM. Biocompatibility and biofilm inhibition of N, N-hexyl, methyl-polyethylenimine bonded to Boston Keratoprosthesis materials. Biomaterials. 2011;32:8783–96.

    Article  CAS  Google Scholar 

  2. Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcántara S. Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials. 2012;33:1759–70.

    Article  CAS  Google Scholar 

  3. Altmann B, Steinberg T, Giselbrecht S, Gottwald E, Tomakidi P, Bächle-Haas M, Kohal RJ. Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly(methyl methacrylate) polycarbonate. Biomaterials. 2011;32:8947–56.

    Article  CAS  Google Scholar 

  4. Tsai Y, Marrero TR, Yasuda HK. Plasma polymerization for self-curing PMMA bone cement. J Appl Polym Sci. 1994;54:1773–9.

    Article  CAS  Google Scholar 

  5. Zhang C, Wyatt J, Russell SP, Weinkauf DH. Methanol vapor sorption in plasma polymerized thin films. Polymer. 2004;45:7655–63.

    Article  CAS  Google Scholar 

  6. Zhang C, Wyatt J, Weinkauf DH. Carbon dioxide sorption in conventional and plasma polymerized methyl methacrylate thin films. Polymer. 2004;45:7665–71.

    Article  CAS  Google Scholar 

  7. Jeon HS, Wyatt J, Nixon DH, Weinkauf DH. Characterization of thin polymer-like films formed by plasma polymerization of methylmethacrylate: a neutron reflectivity study. J Appl Polym Sci B. 2004;42:2522–30.

    Article  CAS  Google Scholar 

  8. Rich SA, Yedji M, Amadou J, Terwagne G, Felten A, Avril L, Pireaux JJ. Polymer coatings to functionalize carbon nanotubes. Phys E. 2012;44:1012–20.

    Article  Google Scholar 

  9. Iwamoto S, Nakagaito AN, Yano H, Nogi M. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A. 2005;81:1109–12.

    Article  CAS  Google Scholar 

  10. Nogi M, Handa K, Nakagaito AN, Yano H. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett. 2005;87:243110:1–3.

    Article  Google Scholar 

  11. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett. 2006;88:133124:1–3.

    Article  Google Scholar 

  12. Perrin DD, Armarigo WLF, Perrin DF. Purification of laboratory chemicals. 2nd ed. New York: Pergamon; 1980.

    Google Scholar 

  13. Balamurugan A, Kannan S, Selvara V, Rajeswari S. Development and Spectral characterization of poly(methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater Artif Organs. 2004;18:41–5.

    Google Scholar 

  14. Singho ND, Lah NAC, Johan MR, Ahmad R. FTIR studies on silver-poly(methylmethacrylate) nanocomposites via in-situ polymerization technique. Int J Electrochem Sci. 2012;7:5596–603.

    CAS  Google Scholar 

  15. Duan G, Zhang Ch, Li A, Yang X, Lu L, Wang X. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett. 2008;3:118–22.

    Article  Google Scholar 

  16. Mandelkern L. Crystallization of polymers. New York: McGraw Hill; 1964.

    Google Scholar 

  17. Hussein MA, Asiri AM, Aly KI. New polyamides and polyoxazoles based on diphenyl ether segments in the polymers’ backbone. Int J Polym Mater. 2012;61:154–75.

    Article  CAS  Google Scholar 

  18. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules. 1986;19:2160–8.

    Article  CAS  Google Scholar 

  19. Manzi-Nshuti C, Wang D, Hossenlopp JM, Wilkie CA. The role of the trivalent metal in an LDH: synthesis, characterization and fire properties of thermally stable PMMA/LDH systems. Polym Degrad Stab. 2009;94:705–11.

    Article  CAS  Google Scholar 

  20. Junior WS, Emmler T, Abetz C, Handge UA, dos Santos JF, Amancio-Filho ST, Abetz V. Friction spot welding of PMMA with PMMA/silica and PMMA/silica-g-PMMA nanocomposites functionalized via ATRP maximum thermal degradation rate. Polymer. 2014;55:5146–59.

    Article  CAS  Google Scholar 

  21. Hu Y-H, Chen C-Y, Wang C-C. Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab. 2004;84:545–53.

    Article  CAS  Google Scholar 

  22. Zhang L, Li F, Chen Y, Wang X. synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in situ thermal decomposition. J Lumin. 2011;131:1701–6.

    Article  CAS  Google Scholar 

  23. Kim E, Lee Y, Bang J, Kim K, Choe S. Synthesis and electrical resistivity of the monodisperse PMMA/Ag hybrid particles. Mater Chem Phys. 2012;134:814–20.

    Article  CAS  Google Scholar 

  24. Chen Y-C, Chen X-L, Liu RL-H, Shu H-J, Ger M-D. Preparation of villus-like PMMA/silica hybrids via surface modification and wet grinding. J Alloys Compd. 2010;507:302–8.

    Article  CAS  Google Scholar 

  25. Song X, Wang X, Wang H, Zhong W, Du Q. PMMA–silica hybrid thin films with enhanced thermal properties prepared via a non-hydrolytic sol–gel process. Mater Chem Phys. 2008;109:143–7.

    Article  CAS  Google Scholar 

  26. Wang J, Shi Z, Ge Y, Wang Y, Fan J, Yin J. Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Mater Chem Phys. 2012;136:43–50.

    Article  CAS  Google Scholar 

  27. Li Y-L, Kuan C-F, Chen C-H, Kuan H-C, Yip M-C, Chiu S-L, Chiang C-L. Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys. 2012;134:677–85.

    Article  CAS  Google Scholar 

  28. Singh AK, Mishra RK, Prakash R, Maiti P, Singh AK, Pandey D. Specific interactions in partially miscible polycarbonate (PC)/poly(methyl methacrylate) (PMMA) blends. Chem Phys Lett. 2010;486:32–6.

    Article  CAS  Google Scholar 

  29. Shin J, Bae W, Kim H. Synthesis of cross-linked poly(methyl methacrylate) via dispersion polymerization in supercritical carbon dioxide. Colloid Polym Sci. 2010;288:271–82.

    Article  CAS  Google Scholar 

  30. Al-Shannaq R, Farid M, Al-Muhtaseb S, Kurdi J. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Sol Energy Mater Sol Cells. 2015;132:311–8.

    Article  CAS  Google Scholar 

  31. Wang C, Yan J, Cui X, Cong D, Wang H. Preparation and characterization of magnetic hollow PMMA nanospheres via in situ emulsion polymerization. Colloids Surf A Physicochem Eng Asp. 2010;363:71–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud A. Hussein or Reda M. El-Shishtawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, M.A., El-Shishtawy, R.M., Abu-Zied, B.M. et al. The impact of cross-linking degree on the thermal and texture behavior of poly(methyl methacrylate). J Therm Anal Calorim 124, 709–717 (2016). https://doi.org/10.1007/s10973-016-5240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5240-1

Keywords

Navigation