Skip to main content
Log in

Highly thermal stable organoclays of ionic liquids and silane organic modifiers and effect of montmorillonite source

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Since many polymer–organoclays nanocomposites are prepared in melt state, the thermal stability of the surfactants present in these organoclays is extremely important. Alkyl ammonium salts are surfactants which have been used in organoclays, but the low thermal degradation temperature of these salts is a drawback for polymer nanocomposites preparation in the melt state at temperatures higher than 200 °C. In order to obtain organoclays more suitable to be used in these polymer nanocomposites, in this work clay minerals were modified with more thermally stable organic modifiers than conventional salts. Two types of commercial clay minerals were organically modified with alkyl ammonium salt, alkyl and aryl phosphonium salts and an organosilane compound. X-ray diffraction, thermogravimetric analysis (TG) and infrared analysis results indicate that for both commercial clay minerals the preparation of the organoclays was efficient. TG analysis confirmed that phosphonium and silane organoclays are more thermally stable as compared with conventional alkyl ammonium organoclays. It was also observed that the thermal resistance of the organoclay depends on the type of the aluminosilicate used for the organic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grim RE. Clay mineralogy. New York: McGraw-Hill; 1968.

    Google Scholar 

  2. Alther GR. Organically modified clay removes oil from water. Waste Manag. 1995;15:623–8.

    Article  CAS  Google Scholar 

  3. Xu SH, Sheng G, Boyd SA. Use of organoclays in pollution abatement. Adv Agron. 1997;59:25–62.

    Article  Google Scholar 

  4. Beall GW. The use of organo-clays in water treatment. Appl Clay Sci. 2003;24:11–20.

    Article  CAS  Google Scholar 

  5. Churchman GJ, Gates WP, Theng BKG, Yuan G. Clays and clay minerals for pollution control. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Amsterdam: Elsevier; 2006. p. 625–75.

    Chapter  Google Scholar 

  6. Solomon DH, Hawthorne DG. Chemistry of pigments and fillers. New York: Wiley; 1983.

    Google Scholar 

  7. Pinnavaia TJ, Beall GW. Polymer–clay nanocomposites. Chichester: Wiley; 2000.

    Google Scholar 

  8. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid. J Mater Res. 1993;8:1179–84.

    Article  CAS  Google Scholar 

  9. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  Google Scholar 

  10. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  11. Souza MA, Larocca NM, Araujo EM, Pessan LA. Preparation and characterization of nanocomposites of polyamide 6/Brazilian clay with different organic modifiers. Mater Sci Forum. 2008;570:18–23.

    Article  CAS  Google Scholar 

  12. Martins CG, Larocca NM, Paul DR, Pessan LA. Nanocomposites formed from polypropylene/EVA blends. Polymer. 2009;50:1743–54.

    Article  CAS  Google Scholar 

  13. Oliveira AD, Larocca NM, Paul DR, Pessan LA. Effects of mixing protocol on the performance of nanocomposites based on polyamide 6/acrylonitrile-butadiene-styrene blends. Polym Eng Sci. 2012;52:1909–19.

    Article  CAS  Google Scholar 

  14. Vaia RA, Giannelis EP. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules. 1997;30:7990–9.

    Article  CAS  Google Scholar 

  15. Vaia RA, Giannelis EP. Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules. 1997;30:8000–9.

    Article  CAS  Google Scholar 

  16. Manias E, Chen H, Krishnamoorti R, Genzer J, Kramer EJ, Giannelis EP. Intercalation kinetics of long polymers in 2 nm confinements. Macromolecules. 2000;33:7955–66.

    Article  CAS  Google Scholar 

  17. Xie W, Gao Z, Liu K, Pan WP, Vaia R, Hunter D, Singh A. Thermal characterization of organically modified montmorillonite. Thermochim Acta. 2001;367–368:339–50.

    Article  Google Scholar 

  18. Leszezynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta. 2007;453:75–96.

    Article  Google Scholar 

  19. Yoon PJ, Hunter DL, Paul DR. Polycarbonate nanocomposites: part 2. Degradation and color formation. Polymer. 2003;44:5341–54.

    Article  CAS  Google Scholar 

  20. Fornes TD, Yoon PJ, Paul DR. Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer. 2003;44:7545–56.

    Article  CAS  Google Scholar 

  21. Gilman JW, Awad WH, Davis RD, Shields J, Harris RH Jr, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, DeLong HC. Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite. Chem Mater. 2002;14:3776–85.

    Article  CAS  Google Scholar 

  22. Há JU, Xanthos M. Functionalization of nanoclays with ionic liquids for polypropylene composites. Polym Compos. 2009;30:534–42.

    Article  Google Scholar 

  23. Livi S, Duchet-Rumeau J, Pham TN, Gérard JF. A comparative study on different ionic liquids used as surfactants: effect on thermal and mechanical properties of high-density polyethylene nanocomposites. J Colloid Interfaces Sci. 2010;349:424–33.

    Article  CAS  Google Scholar 

  24. Ganguly S, Dana K, Mukhopadhyay TK, Ghatak S. Simultaneous intercalation of two quaternary phosphonium salts into montmorillonite. Clays Clay Miner. 2011;59:13–20.

    Article  CAS  Google Scholar 

  25. Ganguly S, Dana K, Mukhopadhyay TK, Ghatak S. Thermal degradation of alkyl triphenyl phosphonium intercalated montmorillonites—an isothermal kinetic study. J Therm Anal Calorim. 2011;105:199–209.

    Article  CAS  Google Scholar 

  26. Livi S, Duchet-Rumeau J, Gérard J. Supercritical CO2—ionic liquid mixtures for modification of organoclays. J Colloid Interfaces Sci. 2011;353:225–30.

    Article  CAS  Google Scholar 

  27. Yan Z, Meng D, Huang Y, Hou Z, Wu X, Wang Y, Du X, Xie H. Modification of kaolinite with alkylimidazolium salts. J Therm Anal Calorim. 2014;118:133–40.

    Article  CAS  Google Scholar 

  28. Isoda K, Kuroda K. Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem Mater. 2000;12:1702–7.

    Article  CAS  Google Scholar 

  29. Shimojima A, Mochizuki D, Kuroda K. Synthesis of silylated derivatives of a layered polysilicate kanemite with mono-, di-, and trichloro(alkyl)silanes. Chem Mater. 2001;13:3603–9.

    Article  CAS  Google Scholar 

  30. Park KW, Jeong SY, Kwon OY. Interlamellar silylation of H-kenyaite with 3-aminopropyltriethoxysilane. Appl Clay Sci. 2004;27:21–7.

    Article  CAS  Google Scholar 

  31. Park M, Shim IK, Jung EY, Choy JH. Modification of external surface of laponite by silane grafting. J Phys Chem Solids. 2004;65:499–501.

    Article  CAS  Google Scholar 

  32. Herrera NN, Letoffe J, Putaux J, David L, Bourgeat-lami E, Lyon CB, Cedex V. Aqueous dispersions of silane-functionalized laponite clay platelets. a first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir. 2004;20:1564–71.

    Article  CAS  Google Scholar 

  33. Su L, Tao Q, He H, Zhu J, Yuan P, Zhu R. Silylation of montmorillonite surfaces: dependence on solvent nature. J Colloid Interfaces Sci. 2013;391:16–20.

    Article  CAS  Google Scholar 

  34. Bruce AN, Lieber D, Hua I, Howarter JA. Rational interface design of epoxy-organoclay nanocomposites: role of structure–property relationship for silane modifiers. J Colloid Interfaces Sci. 2014;419:73–8.

    Article  CAS  Google Scholar 

  35. Fletcher P, Sposito G. The chemical modeling of clay electrolyte interactions for montmorillonite. Clay Miner. 1989;24:375–91.

    Article  CAS  Google Scholar 

  36. Morris HD, Bank S, Ellis PD. 27AI NMR spectroscopy. J Phys Chem. 1990;3:3121–9.

    Article  Google Scholar 

  37. Frost RL, Kloprogge JT. Vibrational spectroscopy of ferruginous smectite and nontronite. Spectrochim Acta Part A. 2000;56:2177–89.

    Article  Google Scholar 

  38. Madejova J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.

    Article  CAS  Google Scholar 

  39. Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6:1017–22.

    Article  CAS  Google Scholar 

  40. Xi YF, Ding Z, He HP, Frost RL. Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochimica Acta Part A. 2005;61:515–25.

    Article  Google Scholar 

  41. Pate HA, Somani RS, Bajaj HC, Jasra RV. Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci. 2007;35:194–200.

    Article  Google Scholar 

  42. Ganguly S, Dana K, Parya TK, Mukhopadhyay TK, Ghatak S. Organic-inorganic hybrids prepared from alkyl phosphonium salts intercalated montmorillonites. Ceramics Silikáty. 2012;56:306–13.

    CAS  Google Scholar 

  43. He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D, Frost RL. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53:287–93.

    Article  CAS  Google Scholar 

  44. Xie W, Xie R, Pan W, Hunter D, Koene B, Tan L, Vaia R. Thermal stability of quaternary phosphonium modified montmorillonites. Chem Mater. 2002;15:4837–45.

    Article  Google Scholar 

  45. Hedley CB, Yuan G, Theng BKG. Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl Clay Sci. 2007;35:180–8.

    Article  CAS  Google Scholar 

  46. Leite IF, Soares AP, Carvalho LH, Raposo CMO, Malta OML, Silva SML. Characterization of pristine and purified organobentonites. J Therm Anal Calorim. 2010;100:563–9.

    Article  CAS  Google Scholar 

  47. Abdallah DJ, Weiss RG. The influence of the cationic center, anion, and chain length of tetra-n-alkylammonium and -phosphonium salt gelators on the properties of their thermally reversible organogels. Chem Mater. 2000;12:406–13.

    Article  CAS  Google Scholar 

  48. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

  49. He H, Duchet J, Galy J, Gerard J. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interfaces Sci. 2005;288:171–6.

    Article  CAS  Google Scholar 

  50. Shanmugharaj AM, Yop K, Hun S. Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. J Colloid Interfaces Sci. 2006;298:854–9.

    Article  CAS  Google Scholar 

  51. Ek S, Root A, Peussa M, Niinistö L. Determination of the hydroxyl group content in Silica by thermogravimetry and a comparison with H-1 MAS NMR results. Thermochim Acta. 2001;379:201–12.

    Article  CAS  Google Scholar 

  52. He H, Ma Y, Zhu J, Yuan P, Qing Y. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl Clay Sci. 2010;48:67–72.

    Article  CAS  Google Scholar 

  53. Torok B, Bartok M, Dekany I. The structure of chiral phenyl-ethylammonium montmorillonites in ethanol–toluene mixtures. Colloid Polym Sci. 1999;277:340–6.

    Article  CAS  Google Scholar 

  54. Imai Y, Nishimura S, Inukai Y, Tateyama H. Differences in quasicrystals of smectite-cationic surfactant complexes due to head group structure. Clays Clay Miner. 2003;51:162–7.

    Article  CAS  Google Scholar 

  55. Lagaly G, Ogawa M, Dékány I. Clay mineral-organointeractions. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Amsterdam: Elsevier; 2006. p. 309–77.

    Chapter  Google Scholar 

  56. Mirau PA, Serres JL, Jacobs D, Garrett PH, Vaia RA. Structure and dynamics of surfactant interfaces in organically modified clays. J Phys Chem B. 2008;112:10544–51.

    Article  CAS  Google Scholar 

  57. Shen W, He H, Zhu J, Yuan P, Frost RL. Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interfaces Sci. 2007;313:268–73.

    Article  CAS  Google Scholar 

  58. Tournassat C, Neaman A, Villéras F, Bosbach D, Charlet L. Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. Am Mineral. 2003;88:1989–95.

    Article  CAS  Google Scholar 

  59. Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of clay tactoid exfoliation in epoxy–clay nanocomposites. Chem Mater. 1995;7:2144–50.

    Article  CAS  Google Scholar 

  60. Hackett E, Manias E, Giannelis EP. Molecular dynamics simulations of organically modified layered silicates. J Chem Phys. 1998;108:7410–74.

    Article  CAS  Google Scholar 

  61. Fornes TD, Hunter DL, Paul DR. Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer. 2004;45:2321–31.

    Article  CAS  Google Scholar 

  62. Ganguly S, Dana K, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.

    Article  CAS  Google Scholar 

  63. Mauroy H, Plivelic TS, Hansen EL, Fossum JO, Helgesen G, Knudsen KD. Effect of clay surface charge on the emerging properties of polystyrene–organoclay nanocomposites. J Phys Chem C. 2013;117:19656–63.

    CAS  Google Scholar 

  64. Paul DR, Zeng QH, Yu AB, Lu GQ. The interlayer swelling and molecular packing in organoclays. J Colloid Interfaces Sci. 2005;292:462–8.

    Article  CAS  Google Scholar 

  65. Li Z, Jhang WT. Interlayer conformations of intercalated dodecyltrimethylammonium in rectorite as determined by FTIR, XRD, and TG analysis. Clays Clay Miner. 2009;57:194–204.

    Article  CAS  Google Scholar 

  66. Fraser KJ, MacFarlane DR. Phosphonium-based ionic liquids: an overview. Austr J Chem. 2009;62:309–21.

    Article  CAS  Google Scholar 

  67. Park Y, Ayoko GA, Kristof J, Horváth E, Frost RL. A thermoanalytical assessment of an organoclay. J Therm Anal Calorim. 2012;107:1137–42.

    Article  CAS  Google Scholar 

  68. He H, Ma L, Zhu J, Frost RL, Theng BKG, Bergaya F. Applied clay science synthesis of organoclays: a critical review and some unresolved issues. Appl Clay Sci. 2014;100:22–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Research Council for Science and Technology (CNPq) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Antonio Pessan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, M.A., Larocca, N.M. & Pessan, L.A. Highly thermal stable organoclays of ionic liquids and silane organic modifiers and effect of montmorillonite source. J Therm Anal Calorim 126, 499–509 (2016). https://doi.org/10.1007/s10973-016-5501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5501-z

Keywords

Navigation