Skip to main content
Log in

Delayed effects of neutron radiation on human serum

In vitro DSC study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) provides a unique temperature-induced denaturation profile of the mixture of component proteins in the serum. This profile depends on a health status of serum donor, physicochemical properties of serum solution samples, and many experimental factors. Whether an exposure of serum sample to neutron radiation leads to changes in serum DSC profile has been checked in this study. The results indicate that immediately after the experiment, the differences between DSC serum profiles for irradiated and control samples are not significant. However, the distinct differences in the thermal unfolding of proteins present in the irradiated and control serum have been observed after 2 or 3 weeks of the storage of serum samples at about 4 °C. These differences have been found more pronounced at the dose of 5 Gy than at 0.5 Gy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA. Radiation biology: A handbook for teachers and students, Training course series 42. IAEA, Vienna; 2010.

  2. Seth I, Schwartz JL, Stewart RD, Emery R, Joiner MC, Tucker JD. Neutron exposures in human cells: Bystander effect and relative biological effectiveness. PLoS One. 2014;9(6):e98947. doi:10.1371/journal.pone.0098947.

    Article  Google Scholar 

  3. Broerse JJ, Bartstra RW, van Bekkum DW, van der Hage MH, Zurcher C, van Zwieten MJ, Hollander CF. The carcinogenic risk of high dose total body irradiation in non-human primates. Radiother Oncol. 2000;54:247–53.

    Article  CAS  Google Scholar 

  4. Hollander CF, Zurcher C, Broerse JJ. Tumorigenesis in high-dose total body irradiated rhesus monkeys—a life span study. Toxicol Pathol. 2003;31:209–13.

    Article  CAS  Google Scholar 

  5. NATO. Handbook on the medical aspects of NBC defensive operations AMedP-6(B), Part I. In: Chapter 5, Biophysical and biological effects of ionizing radiation; 1996.

  6. Kuhne WW, Gersey BB, Wilkins R, Wu H, Wender SA, Varghese G, Dynan WS. Biological effects of high-energy neutrons measured in vivo using a vertebrate model. Radiat Res. 2009;172(4):473–80.

    Article  CAS  Google Scholar 

  7. UNSCEAR. UNSCEAR REPORT, Annex C. Non-targeted and delayed effects of exposure to ionizing radiations, vol. II. UNSCEAR; 2006.

  8. Engels H, Wambersie A. Relative biological effectiveness of neutrons for cancer induction and other late effects: a review of radiobiological data. Recent Results Cancer Res. 1998;150:54–87.

    Article  CAS  Google Scholar 

  9. Lőrinczy D, editor. Thermal analysis in medical application. Budapest: Akadémiai Kiadó; 2011.

    Google Scholar 

  10. Lőrinczy D. The, “Green Issue” of JTAC as a great idea of Judit Simon. J Therm Anal Calorim. 2015;120:13–22.

    Article  Google Scholar 

  11. Góralski P, Rogalińska M, Błoński JZ, Pytel E, Robak T, Kiliańska ZM, Piekarski H. The differences in thermal profiles between normal and leukemic cells exposed to anticancer drug evaluated by differential scanning calorimetry. J Therm Anal Calorim. 2014;118:1339–44.

    Article  Google Scholar 

  12. Michnik A. The chapter: Blood plasma, serum and serum proteins microcalorimetric studies aimed at diagnosis support. In: Lőrinczy D, editor. Thermal analysis in medical application. Budapest: Akadémiai Kiadó; 2011.

    Google Scholar 

  13. Michnik A, Drzazga Z, Michalik K, Barczyk A, Santura I, Sozańska E, Pierzchała W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J Therm Anal Calorim. 2010;102:57–60.

    Article  CAS  Google Scholar 

  14. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetry outside the box: a new window into the plasma proteome. Biophys J. 2008;94:1377–83.

    Article  CAS  Google Scholar 

  15. Garbett NC, Mekmaysy CS, Helm CW, Jenson AB, Chaires JB. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol. 2009;86:186–91.

    Article  CAS  Google Scholar 

  16. Garbett NC, Mekmaysy CS, DeLeeuw L, Chaires JB. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods. 2015;76:41–50.

    Article  CAS  Google Scholar 

  17. Zapf I, Fekecs T, Ferencz A, Tizedes GY, Pavlovics G, Kálmán E, Lőrinczy D. DSC analysis of human plasma in breast cancer patients. Thermochim Acta. 2011;524:88–91.

    Article  CAS  Google Scholar 

  18. Todinova S, Krumova S, Gartcheva L, Robeerst C, Taneva SG. Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case. Anal Chem. 2011;83:7992–8.

    Article  CAS  Google Scholar 

  19. Fekecs T, Zapf I, Ferencz A, Lőrinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in melanoma patients with or without regional lymph node metastases. J Therm Anal Calorim. 2012;108:149–52.

    Article  CAS  Google Scholar 

  20. Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta. 2012;1820:1879–85.

    Article  CAS  Google Scholar 

  21. Krumova S, Rukova B, Todinova S, Gartcheva L, Milanova V, Toncheva D, Taneva SG. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim Acta. 2013;572:59–64.

    Article  CAS  Google Scholar 

  22. Michnik A, Drzazga Z, Poprzecki S, Czuba M, Kempa K, Sadowska-Krepa E. DSC serum profiles of sportsmen. J Therm Anal Calorim. 2013;113:365–70.

    Article  CAS  Google Scholar 

  23. Moezzi M, Ferencz A, Lőrinczy D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J Therm Anal Calorim. 2014;116:557–62.

    Article  CAS  Google Scholar 

  24. Relkin P. Using DSC for monitoring protein conformation stability and effects on fat droplets crystallinity in complex food emulsions. In: Lorinczy D, editor. The nature of biological systems as revealed by thermal methods. London: Kluwer Academic Publishers; 2004. p. 99–126.

    Google Scholar 

  25. Fitzsimons SM, Mulvihill DM, Morris ER. Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocolloids. 2007;21:638–44.

    Article  CAS  Google Scholar 

  26. Cooper A. Thermodynamics of Protein Folding and Stability. In: Allen G, editor. Protein: A Comprehensive Treatise, vol. 2. Greenwich, CT: JAI Press Inc; 1999. p. 217–70.

    Google Scholar 

  27. Ahrer K, Buchacher A, Iberer G, Jungbauer A. Thermodynamic stability and formation of aggregates of human immunoglobulin G characterized by differential scanning calorimetry and dynamic light scattering. J Bichem Biophys Methods. 2006;66:73–86.

    Article  CAS  Google Scholar 

  28. Privalov PL. Stability of proteins. Small globular proteins. Adv Protein Chem. 1979;33:167–241.

    Article  CAS  Google Scholar 

  29. Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51.

    Article  CAS  Google Scholar 

  30. Griko YV, Freire E, Privalov G, Van Dael H, Privalov PL. The unfolding thermodynamics of c-type lysozymes: a calorimetric study of the heat denaturation of equine lysozyme. J Mol Biol. 1995;252:447–59.

    Article  CAS  Google Scholar 

  31. Privalov GP, Privalov PL. Problems and prospects in microcalorimetry of biological macromolecules. Methods Enzymol. 2000;323:31–62.

    Article  CAS  Google Scholar 

  32. Lepock JR. Measurement of protein stability and protein denaturation in cells using differential scanning calorimetry. Methods. 2005;35:117–25.

    Article  CAS  Google Scholar 

  33. Efimova YM, Haemers S, Wierczinski B, Norde W, van Well AA. Stability of globular proteins in H2O and D2O. Biopolymers. 2007;85:264–73.

    Article  CAS  Google Scholar 

  34. Relkin P, Meylheuc T, Launay B, Raynal K. Heat-induced gelation of globular protein mixtures. A DSC and scanning electron microscopic study. J Therm Anal. 1998;51:747–55.

    Article  CAS  Google Scholar 

  35. Michnik A, Drzazga Z. Thermal denaturation of mixtures of human serum proteins—DSC study. J Therm Anal Calorim. 2010;101:513–8.

    Article  CAS  Google Scholar 

  36. Boye JI, Alli I. Thermal denaturation of mixtures of α-lactalbumin and β-lactoglobulin: a differential scanning calorimetric study. Food Res Int. 2000;33:673–82.

    Article  CAS  Google Scholar 

  37. Michnik A, Polaczek-Grelik K, Leśniak P, Drzazga Z. Effects of low-dose ionizing radiation on α,β-globulins solutions studied by DSC. J Therm Anal Calorim. 2013;111:1845–52.

    Article  CAS  Google Scholar 

  38. Cooper A. Microcalorimetry of heat capacity and volumetric changes in biomolecular interactions-the link to solvation? J Therm Anal Calorim. 2011;104:69–73.

    Article  CAS  Google Scholar 

  39. Cooper A. Heat capacity effects in protein folding and ligand binding: a re-evaluation of the role of water in biomolecular thermodynamics. Biophys Chem. 2005;115:89–97.

    Article  CAS  Google Scholar 

  40. Gorobchenko OA, Nikolov OT, Gatash SV. Conformation transitions of blood proteins under influence of physical factors on microwave dielectric method. J Quant Spectrosc Radiat Transfer. 2006;102:18–24.

    Article  CAS  Google Scholar 

  41. Mikusinska-Planner A, Surma M. X-ray diffraction study of human serum. Spectrochim Acta. 2000;56:1835–41.

    Article  Google Scholar 

  42. Thirumalai D, Reddy G, Straub JE. Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res. 2012;45:83–92.

    Article  CAS  Google Scholar 

  43. Bruschi M, Santucci L, Candiano G, Ghiggeri GM. Albumin heterogeneity in low-abundance fluids. The case of urine and cerebro-spinal fluid. Biochim Biophys Acta. 2013;1830:5503–8.

    Article  CAS  Google Scholar 

  44. Michnik A. Thermal stability of bovine serum albumin DSC study. J Therm Anal Calorim. 2003;71:509–19.

    Article  CAS  Google Scholar 

  45. Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84:113–7.

    Article  CAS  Google Scholar 

  46. Bruschi M, Candiano G, Santucci L, Ghiggeri GM. Oxidized albumin. The long way of a protein of uncertain function. Biochim Biophys Acta. 2013;1830:5473–9.

    Article  CAS  Google Scholar 

  47. Anraku M, Chuang VGC, Maruyama T, Otagiri M. Redox properties of serum albumin. Biochim Biophys Acta. 2013;1830:5465–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Michnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michnik, A., Polaczek-Grelik, K., Staś, M. et al. Delayed effects of neutron radiation on human serum. J Therm Anal Calorim 126, 37–45 (2016). https://doi.org/10.1007/s10973-016-5255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5255-7

Keywords

Navigation