Skip to main content
Log in

Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS)

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This paper reports the effects of urea on the heat-induced gelation of bovine serum albumin (BSA), which was studied by the tube inversion method, rheological measurements, and small-angle neutron scattering (SANS). An increase in the urea concentration accelerated the rate of gelation because the protein molecules have already been unfolded to some extent during sample preparation in the urea solution. In addition, the BSA solution in the presence of urea underwent a sol-gel-sol transition during the time sweep test at a constant temperature of 80oC. On the other hand, the BSA solution without urea turned into a hard and brittle gel that did not return to the solution state during isothermal heating at a constant temperature of 80oC. Aggregation and re-bonding of the denatured and unfolded protein chains led to gel formation. Urea added to the protein denatures its tertiary and secondary structures by simultaneously disrupting the hydrogen bonds, hydrophobic interactions, and altering the solvent properties. Furthermore, urea induces thermoreversible chemical interactions in BSA solutions leading to the formation of a gel with dynamic properties under these experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhatty, R.S., 1990, Cooking quality of lentils: The role of structure and composition of cell walls, J. Agric. Food Chem. 38, 376–383.

    Article  Google Scholar 

  • Bruno, O.M., R. de Oliveira Plotze, M. Falvo, and M. de Castro, 2008, Fractal dimension applied to plant identification, Inf. Sci. 178, 2722–2733.

    Article  Google Scholar 

  • Calzada, J.F. and M. Peleg, 1978, Mechanical interpretation of compressive stress-strain relationships of solid foods, J. Food Sci. 43, 1087–1092.

    Article  Google Scholar 

  • Chambon, F. and H.H. Winter, 1987, Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry, J. Rheol. 31, 683–697.

    Article  Google Scholar 

  • Clark, A.H. and S.B. Ross-Murphy, 1987, Structural and mechanical properties of biopolymer gels, In: Clark, A.H., K. Kamide, S.B. Ross-Murphy, and M. Saito, eds., Advances in Polymer Science, Springer, Heidelberg, 57–192.

    Google Scholar 

  • Di Ieva, A., F. Grizzi, G. Ceva-Grimaldi, C. Russo, P. Gaetani, E. Aimar, D. Levi, P. Pisano, F. Tancioni, G. Nicola, M. Tschabitscher, N. Dioguardi, and R. Rodriguezy Baena, 2007, Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue, J. Anat. 211, 673–680.

    Article  Google Scholar 

  • Feigin, L.A., D.I. Svergun, and G.W. Taylor, 1987, Principles of the theory of X-ray and neutron scattering, In: Feigin, L.A., D.I. Svergun, and G.W. Taylor, eds., Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Springer, New York, 3–24.

    Chapter  Google Scholar 

  • Gonçalves, C., P. Pereira, and M. Gama, 2010, Self-assembled hydrogel nanoparticles for drug delivery applications, Materials 3, 1420–1460.

    Article  Google Scholar 

  • Graziano, G., 2001, On the solubility of aliphatic hydrocarbons in 7 M aqueous urea, J. Phys. Chem. B 105, 2632–2637.

    Article  Google Scholar 

  • Hao, J. and R.A. Weiss, 2011, Viscoelastic and mechanical behavior of hydrophobically modified hydrogels, Macromolecules 44, 9390–9398.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Hyun, K., W. Kim, S.J. Park, and M. Wilhelm, 2013, Numerical simulation results of the nonlinear coefficient Q from FT-rheology using a single mode pom-pom model, J. Rheol. 57, 1–25.

    Article  Google Scholar 

  • Jana, S., S. Ghosh, S. Dalapati, and N. Guchhait, 2012, Exploring structural change of protein bovine serum albumin by external perturbation using extrinsic fluorescence probe: Spectroscopic measurement, molecular docking and molecular dynamics simulation, Photochem. Photobiol. Sci. 11, 323–332.

    Article  Google Scholar 

  • Kinsella, J.E., D.J. Rector, and L.G. Phillips, 1994, Physicochemical properties of proteins: Texturization via gelation, glass and film formation, In: Yada, R.Y., R.L. Jackman, and J.L. Smith, eds., Protein Structure-Function Relationships in Food, Springer, New York, 1–21.

    Chapter  Google Scholar 

  • Kundu, S., A.J. Chinchalikar, K. Das, V.K. Aswal, and J. Kohlbrecher, 2014, Mono-, di-and tri-valent ion induced protein gelation: Small-angle neutron scattering study, Chem. Phys. Lett. 593, 140–144.

    Article  Google Scholar 

  • Lefevre, F., B. Fauconneau, A. Ouali, and J. Culioli, 2002, Thermal gelation of brown trout myofibrils from white and red muscles: Effect of pH and ionic strength, J. Sci. Food Agric. 82, 452–463.

    Article  Google Scholar 

  • Lemkul, J.A., W.J. Allen, and D.R. Bevan, 2010, Practical considerations for building GROMOS-compatible small-molecule topologies, J. Chem. Inf. Model. 50, 2221–2235.

    Article  Google Scholar 

  • Li, C., A. Faulkner-Jones, A.R. Dun, J. Jin, P. Chen, Y. Xing, Z. Yang, Z. Li, W. Shu, D. Liu, and R.R. Duncan, 2015, Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting, Angew. Chem.-Int. Edit. 54, 3957–3961.

    Article  Google Scholar 

  • Liu, M., Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima, M. Takata, and T. Aida, 2015, An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets, Nature 517, 68–72.

    Article  Google Scholar 

  • Mücksch, C. and H.M. Urbassek, 2011, Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface, Langmuir 27, 12938–12943.

    Article  Google Scholar 

  • Nakai, S., 1983, Structure-function relationships of food proteins: With an emphasis on the importance of protein hydrophobicity, J. Agric. Food Chem. 31, 676–683.

    Article  Google Scholar 

  • Nishiyama, Y., J. Sugiyama, H. Chanzy, and P. Langan, 2003, Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron x-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125, 14300–14306.

    Article  Google Scholar 

  • Niu, X., X. Gao, H. Wang, X. Wang, and S. Wang, 2013, Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations, J. Mol. Model. 19, 1039–1047.

    Article  Google Scholar 

  • Ould Eleya, M.M. and S. Gunasekaran, 2002, Gelling properties of egg white produced using a conventional and a low-shear reverse osmosis process, J. Food Sci. 67, 725–729.

    Article  Google Scholar 

  • Paul, S. and S. Paul, 2015, Molecular insights into the role of aqueous trehalose solution on temperature-induced protein denaturation, J. Phys. Chem. B 119, 1598–1610.

    Article  Google Scholar 

  • Pesek, S.L., X. Li, B. Hammouda, K. Hong, and R. Verduzco, 2013, Small-angle neutron scattering analysis of bottlebrush polymers prepared via grafting-through polymerization, Macromolecules 46, 6998–7005.

    Article  Google Scholar 

  • Schmidt, R.H., 1981, Gelation and coagulation, In: Cherry, J.P., eds., Protein Functionality in Foods, American chemical Society, Washington, 131–147.

    Chapter  Google Scholar 

  • Stumpe, M.C. and H. Grubmüller, 2007, Aqueous urea solutions: Structure, energetics, and urea aggregation, J. Phys. Chem. B 111, 6220–6228.

    Article  Google Scholar 

  • Teixeira, J., 1988, Small-angle scattering by fractal systems, J. Appl. Crystallogr. 21, 781–785.

    Article  Google Scholar 

  • Tosh, S.M. and A.G. Marangoni, 2004, Determination of the maximum gelation temperature in gelatin gels, Appl. Phys. Lett. 84, 4242–4244.

    Article  Google Scholar 

  • Totosaus, A., J.G. Montejano, J.A. Salazar, and I. Guerrero, 2002, A review of physical and chemical protein-gel induction, Int. J. Food Sci. Technol. 37, 589–601.

    Article  Google Scholar 

  • Wang, S.F. and D.M. Smith, 1994, Heat-induced denaturation and rheological properties of chicken breast myosin and Factin in the presence and absence of pyrophosphate, J. Agric. Food Chem. 42, 2665–2670.

    Article  Google Scholar 

  • Westphalen, A.D., J.L. Briggs, and S.M. Lonergan, 2005, Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation, Meat Sci. 70, 293–299.

    Article  Google Scholar 

  • Yearley, E.J., I.E. Zarraga, S.J. Shire, T.M. Scherer, Y. Gokarn, N.J. Wagner, and Y. Liu, 2013, Small-angle neutron scattering characterization of monoclonal antibody conformations and interactions at high concentrations, Biophys. J. 105, 720–731.

    Article  Google Scholar 

  • Ying, H., Y. Zhang, and J. Cheng, 2014, Dynamic urea bond for the design of reversible and self-healing polymers, Nat. Commun. 5, 3218.

    Article  Google Scholar 

  • Zhang, F., M.W.A. Skoda, R.M.J. Jacobs, R.A. Martin, C.M. Martin, and F. Schreiber, 2007, Protein interactions studied by SAXS: Effect of ionic strength and protein concentration for BSA in aqueous solutions, J. Phys. Chem. B 111, 251–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnyigide, O.S., Oh, Y., Song, H.Y. et al. Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS). Korea-Aust. Rheol. J. 29, 101–113 (2017). https://doi.org/10.1007/s13367-017-0012-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-017-0012-4

Keywords

Navigation