Skip to main content
Log in

An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation

Part III. Thermal desulfurization kinetic analysis of CuO·CuSO4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Overlapping of parallel or consecutive reactions caused to variation of activation energy and pre-exponential factor and deconvolution of simultaneous reactions rather than fitting the experimental curve by assuming variable kinetic parameters could supply a deeper conception into the mechanism(s) of reaction. The well-known reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this limitation, an advanced method of reaction mechanism model determination based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single step as well as multi-step reactions kinetics. The proposed method was experimentally verified by taking an experimental example of non-isothermal desulfurization kinetics of CuO·CuSO4 in the nanoscale range. Then, the physical meaning of models was effectively interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tomashevitch KV, Kalinin SV, Vertegel AA, Oleinikov NN, Ketsko VA, Tretyakov YD. Application of non-linear heating regime for the determination of activation energy and kinetic parameters of solid-state reactions. Thermochim Acta. 1998;323:101–7.

    Article  CAS  Google Scholar 

  2. Maciejewski M. Computational aspects of kinetic analysis; Part B: The ICTAC Kinetics Project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355:145–54.

    Article  CAS  Google Scholar 

  3. Vyazovkin S. Computational aspects of kinetic analysis; Part C: The ICTAC Kinetics Project—the light at the end of the tunnel. Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  4. Burnham AK. Computational aspects of kinetic analysis; Part D: The ICTAC Kinetics Project—multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355:165–70.

    Article  CAS  Google Scholar 

  5. Roduit B. Computational aspects of kinetic analysis; Part E: The ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355:171–80.

    Article  CAS  Google Scholar 

  6. Badea M, Budrugeac P, Cucos A, Segal E. Thermal decomposition kinetics of bis(pyridine)manganese(II) chloride. J Therm Anal Calorim. 2014;115:1999–2005.

    Article  CAS  Google Scholar 

  7. Muraleedharan K. Thermal decomposition kinetics of potassium iodate. Part I. J Therm Anal Calorim. 2011;103:943–55.

    Article  CAS  Google Scholar 

  8. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  9. Ak M, Cilgi GK, Kuru FD, Cetisli H. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim. 2013;111:1627–32.

    Article  CAS  Google Scholar 

  10. Muraleedharan K. Thermal decomposition kinetics of potassium iodate. Part II. J Therm Anal Calorim. 2013;114:491–6.

    Article  CAS  Google Scholar 

  11. Yilmaz MS, Kalpakli Y, Piskin S. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. J Therm Anal Calorim. 2013;114:1191–9.

    Article  Google Scholar 

  12. Chen WT, Chen WC, Hsueh KH, Chiu CW, Shu CM. Thermokinetic parameters analysis for 1,1-bis-(tert-butylperoxy)-3,3,5-trimethylcyclohexane at isothermal conditions for safety assessment. J Therm Anal Calorim. 2014;118:1085–94.

    Article  CAS  Google Scholar 

  13. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  14. Simon P, Thomas P, Dubaj T, Cibulkova Z, Pellar A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in the case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  15. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  16. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S. Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine. J Therm Anal Calorim. 2014;116:435–46.

    Article  CAS  Google Scholar 

  17. Arshad MA, Maaroufi AK. An innovative reaction model determination methodology in solid state kinetics based on variable activation energy. Thermochim Acta. 2014;585:25–35.

    Article  CAS  Google Scholar 

  18. Carr RW. Modeling of chemical reactions. 1st ed. Amsterdam: Elsevier Science; 2007.

    Google Scholar 

  19. Wan J, Bu ZY, Xu CJ, Li BG, Fan H. Preparation, curing kinetics, and properties of a novel low-volatile star-like aliphatic-polyamine curing agent for epoxy resins. Chem Eng J. 2011;171:357–67.

    Article  CAS  Google Scholar 

  20. Santiago D, Francos XF, Ramis X, Salla JM, Sangermano M. Comparative curing kinetics and thermal–mechanical properties of DGEBA thermosets cured with a hyperbranched poly (ethyleneimine) and an aliphatic triamine. Thermochim Acta. 2011;526:9–21.

    Article  CAS  Google Scholar 

  21. Koga N, Criado JM, Tanaka H. Reaction pathway and kinetics of the thermal decomposition of synthetic brochantite. J Therm Anal. 1997;49:1467–75.

    Article  CAS  Google Scholar 

  22. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation—Part I: Thermal dehydration kinetic analysis of Cu4SO4(OH)6. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4708-8.

  23. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation—Part II: Thermal crystallization kinetic analysis of amorphous Cu4SO4O3. J Therm Anal Calorim. 2015 (under review).

  24. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  25. Liu XW, Feng YL, Li HR, Zhang P, Wang P. Thermal decomposition kinetics of magnesite from thermogravimetric data. J Therm Anal Calorim. 2011;107:407–12.

    Article  Google Scholar 

  26. Verma UN, Mukhopadhyay K. Solid state kinetics of Cu(II) complex of [2-(1,2,3,4-thiatriazole-5-yliminomethyl)-phenol] from thermo gravimetric analysis. J Therm Anal Calorim. 2011;104:1071–5.

    Article  Google Scholar 

  27. Selvakumar J, Raghunathan VS, Nagaraja KS. Sublimation kinetics of scandium β-diketonates. J Therm Anal Calorim. 2010;100:155–61.

    Article  CAS  Google Scholar 

  28. Shahcheraghi SH, Khayati GR. Arrhenius parameters determination in non-isothermal conditions for mechanically activated Ag2O–graphite mixture. J Trans Nonferrous Met Soc China. 2014;24:3994–4003.

    Article  CAS  Google Scholar 

  29. Shahcheraghi SH, Khayati GR. Kinetics analysis of the non-isothermal decomposition of Ag2O–graphite mixture. J Trans Nonferrous Met Soc China. 2014;24:2991–3000.

    Article  CAS  Google Scholar 

  30. Shahcheraghi SH, Khayati GR. The effect of mechanical activation on non-isothermal decomposition kinetics of Ag2O–graphite mixture. The Arab J Sci Eng. 2014;39:7503–12.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  32. Chrissafis K. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  34. Vyazovkin S. Thermal analysis. Anal Chem. 2010;82:4936–49.

    Article  CAS  Google Scholar 

  35. Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208:1592–7.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Sbirrazzuoli N. Kinetic analysis of isothermal cures performed below the limiting glass transition temperature. Macromol Rapid Commun. 2000;21:85–90.

    Article  CAS  Google Scholar 

  37. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  38. Habashi F. Recent trends in extractive metallurgy. J Min Metall Sect B Metall. 2009;45:1–13.

    Article  CAS  Google Scholar 

  39. Gaskell DR. Introduction to metallurgical thermodynamics. 4th ed. London: Taylor & Francis Books; 2003.

    Google Scholar 

  40. Jankovic B, Mentus S, Jelic D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Phys B. 2009;404:2263–9.

    Article  CAS  Google Scholar 

  41. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese di hydrogen phosphate dehydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  42. Gao X, Dollimore D. The thermal decomposition of oxalates: Part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  43. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  44. Jackson KA. Kinetic processes: crystal growth, diffusion, and phase transitions in materials. 1st ed. London: Wiley-VCH; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Shahcheraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahcheraghi, S.H., Khayati, G.R. & Ranjbar, M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation. J Therm Anal Calorim 123, 221–229 (2016). https://doi.org/10.1007/s10973-015-4853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4853-0

Keywords

Navigation