Skip to main content
Log in

Advancements in the integration and understanding of the Sestak–Berggren generalized conversion function for heterogeneous kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetic models are relevant to describe heterogeneous kinetic processes; a number of kinetic models and their mathematical expressions have been reported in the literature, many of these based on idealistic conditions in terms of geometrical constrain and driving forces. Alternatively, the semi-empirical Sestak–Berggren (SB) conversion function, which was proposed as a general equation, encompasses a large variety of equations corresponding to different kinetic models. Despite the fact that the SB equation does not provide any physical meaning, it is extremely useful for kinetic analysis as it offers a good fit to experimental data even when they do not follow the ideal conditions assumed for the conventional kinetic models. One limitation of the SB kinetic model is the fact that its conversion function cannot be analytically integrated to provide an exact solution; thus, it cannot be directly applied in kinetic integral methods. The objective of this study aims to propose some solutions for some specific cases, while the mathematical limits for the values of the kinetic exponents m, n, p of the SB model and their validity are also explored. Further ideas for improving the SB equation or finding an alternative for a superior conversion function were explored in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brown ME. Stocktaking in the kinetics cupboard. J Therm Anal Calorim. 2005;82:665–9.

    Article  CAS  Google Scholar 

  2. Rouquerol J. Controlled transformation rate thermal analysis: the hidden face of thermal analysis. Thermochim Acta. 1989;144(2):209–24.

    Article  CAS  Google Scholar 

  3. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  4. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic, computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  5. Koga N, Sestak J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In Sestak J, Simon P editors. Thermal analysis of micro, nano-and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Hot Topics in Thermal Analysis and Calorimetry , Chapter 1 (Book Series); 2012. Vol. 9, Springer.

  6. Garcia-Garrido C, Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Combined TGA-MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. Phys Chem Chem Phys. 2016;18(42):29348–60.

    Article  PubMed  CAS  Google Scholar 

  7. Benhammada A, Trache D. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectroscopy Rev. 2020;55(8):724–77.

    Article  CAS  Google Scholar 

  8. Materazzi S. Mass Spectrometry Coupled to Thermogravimetry (TG-MS) for Evolved Gas Characterization: A Review. Appl Spectroscopy Rev. 1998;33(3):189–218.

    Article  CAS  Google Scholar 

  9. Brown ME. Reaction kinetics from thermal analysis. In: Brown ME, editor. Introduction to Thermal Analysis. Techniques and Applications. Hot Topics in Thermal Analysis and Calorimetry, Chapter 10 (Book Series). Kluwer Academic Publishers; 2001.

  10. Sestak J, Avramov I. Rationale and myth of thermoanalytical kinetic patterns: how to model reaction mechanisms by the euclidean and fractal geometry and by logistic approach. In: Sestak J et al., editor. Thermal physics and thermal analysis. hot topics in thermal analysis and calorimetry, Vol. 11, Chapter 14 (Book Series). Springer International Publishing Switzerland; 2017.

  11. Budrugeac P. Noţiuni de cinetică chimică a reacţiilor la care participă o fază solidă. In: Segal E, Budrugeac P, Carp O, Doca N, Popescu C, Vlase T, editors. Analiza termică fundamente şi aplicaţii. Analiza cinetică a transformărilor heterogene, Chapter 2. ISBN 978–973–27–2281–7. Editura Academiei Române; 2013.

  12. Galwey AK. Is the science of thermal analysis kinetics based on solid foundations?: A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  CAS  Google Scholar 

  13. Flynn JH. The ’temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  14. Perez-Maqueda LA, Criado JM, Gotor F, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106(12):2862–8.

    Article  CAS  Google Scholar 

  15. Koga N, Vyazovkin S, Burnham AK, Favergeon L, Muravyev NV, Perez-Maqueda LA, Saggese C, Sanchez-Jimenez PE. ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim Acta. 2023;719: 179384.

    Article  CAS  Google Scholar 

  16. Koga N, Malek J, Sestak J, Tanaka H. Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models. Netsu Sokutei. 1993;20(4):210–23.

    Google Scholar 

  17. Fatu D, Segal E. On the use of the degree of conversion in the rate equations. Thermochim Acta. 1982;55:351–4.

    Article  CAS  Google Scholar 

  18. Blazejowski J. Remarks on the description of reaction kinetics under non-isothermal conditions. Thermochim Acta. 1984;76:359–72.

    Article  CAS  Google Scholar 

  19. Koga N. Physico-geometric approach to the kinetics of overlapping solid-state reactions. In Handbook of thermal analysis and calorimetry (vol. 6), Chapter 6. Elsevier; 2018.

  20. Koga N, Criado JM. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81(11):2901–9.

    Article  CAS  Google Scholar 

  21. Arcenegui-Troya J, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA. Relevance of particle size distribution to kinetic analysis: the case of thermal dehydroxylation of kaolinite. Processes. 2021;9(10):1852.

    Article  CAS  Google Scholar 

  22. Flynn JH, Dickens B. Steady-state parameter-jump methods and relaxation methods in thermogravimetry. Thermochim Acta. 1976;15:1–16.

    Article  CAS  Google Scholar 

  23. Flynn JH, Brown M, Segal E, Sestak J. Report on the workshop on kinetics held at ICTA-9. Thermochim Acta. 1989;148:45–7.

    Article  Google Scholar 

  24. Sestak J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36:1997–2007.

    Article  CAS  Google Scholar 

  25. Sestak J, Malek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal kinetic analysis. Solid State Ionics. 1993;63(65):245–54.

    Article  Google Scholar 

  26. Carasco F. The evaluation of kinetic parameters from thermogravimetric data: comparison between established methods and the general analytical equation. Thermochim Acta. 1993;213:115–34.

    Article  Google Scholar 

  27. Koga N, Tanaka H. Accommodation of the actual solid-state process in the kinetic model function: I. Significance of the non-integral kinetic exponents. J Therm Anal. 1994;41:455–69.

  28. Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244:1–20.

    Article  CAS  Google Scholar 

  29. Koga N. Physico-geometric kinetics of solid-state reactions by thermal analyses. J Therm Anal. 1997;49:45–56.

    Article  CAS  Google Scholar 

  30. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    Article  CAS  Google Scholar 

  31. Kopelman R. Fractal reaction kinetics. Science. 1988;241:1620–6.

    Article  PubMed  CAS  Google Scholar 

  32. Ozao R, Ochiai M. Fractal reaction in solids: reaction function reconsidered. J Ceram Soc Jpn. 1993;101(3):263–7.

    Article  CAS  Google Scholar 

  33. Segal E. Fractal approach in the kinetics of solid-gas decompositions. J Therm Anal. 1998;52:537–42.

    Article  CAS  Google Scholar 

  34. Segal E. Fractal approach in the kinetics of solid-gas decompositions: Part II. J Therm Anal. 2000;61:979–84.

    Article  CAS  Google Scholar 

  35. Sestak J. The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta. 2015;611:26–35.

    Article  CAS  Google Scholar 

  36. Malek J, Criado JM, Sestak J, Militky J. Boundary conditions of kinetic models. Thermochim Acta. 1989;153:429–35.

    Article  CAS  Google Scholar 

  37. Malek J, Criado JM. Is the Sestak–Berggren equation a general expression of kinetic models? Thermochim Acta. 1991;175:305–9.

    Article  CAS  Google Scholar 

  38. Malek J, Criado JM. Empirical kinetic models in thermal analysis. Thermochim Acta. 1992;203:25–30.

    Article  CAS  Google Scholar 

  39. Sestak J, Satava V, Wendlandt WW. The Study of heterogeneous processes by thermal analysis. 4. Study of the kinetics under non-isothermal conditions. Thermochim Acta. 1973;7:447–04.

  40. Sestak J. Thermophysical properties of solids: theoretical thermal analysis. Elsevier. 1984.

  41. Avramov I, Sestak J. Generalized logistic kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim. 2014;118:1715–20.

    Article  CAS  Google Scholar 

  42. Avramov I, Sestak J. Generalized kinetics of overall phase transition in terms of logistic equation. Unpublished results.

  43. Gorbachev VM. Some aspects of Sestak’s generalized kinetic equation in thermal analysis. J Therm Anal. 1980;18:193–7.

    Article  CAS  Google Scholar 

  44. Gorbachev VM. Some suggestions for improving the utilization of the function g(α) and p(x) to identify the mechanism of a thermal transformation. J Therm Anal. 1983;27:151–4.

    Article  CAS  Google Scholar 

  45. Burnham AK. Use and misuse of logistic equations for modeling chemical kinetics. J Therm Anal Calorim. 2017;127:1107–16.

    Article  CAS  Google Scholar 

  46. Vyazovkin S. The truncated Sestak–Berggren equation is still the Sestak–Berggren equation, just truncated. J Therm Anal Calorim. 2017;127:1125–6.

    Article  CAS  Google Scholar 

  47. Yeoh OH. Mathematical modelling of vulcanization characteristics. Rubber Chem Technol. 2012;85(3):482–92.

    Article  CAS  Google Scholar 

  48. Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Far Soc. 1944;40:488–98.

    Article  CAS  Google Scholar 

  49. Prout EG, Tompkins FC. The thermal decomposition of silver permanganate. Trans Far Soc. 1946;42:468–72.

    Article  CAS  Google Scholar 

  50. Lewis GN. Autocatalytic decomposition of silver oxide. Proc Am Acad Arts Sci. 1905;40:719–33.

    Article  Google Scholar 

  51. Austin JB, Rickett RL. Kinetics of the decomposition of austenite at constant temperature. Trans AIME. 1938;135:396–415.

    Google Scholar 

  52. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Instit Mining Metall Eng 1939;135:416–42.

  53. Avrami M. Kinetics of phase change: I. General theory J Chem Phys. 1939;7:1103–1112. b) Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–224. c) Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

  54. Kolmogorov AN. Akad Nauk SSSR Izv. Ser Mat. 1937;1:355–9.

    Google Scholar 

  55. Erofe’ev BV. Generalized equation of chemical kinetics and its application in reactions involving solids. Dokl Akad Nauk SSSR. 1946;52:511–4.

    CAS  Google Scholar 

  56. Avramov I. Comments on the Sestak–Berggren equation. J Therm Anal Calorim. 2017;127:1135.

    Article  CAS  Google Scholar 

  57. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94(2):367–71.

  58. Rotaru A, Gosa M. Computational thermal and kinetic analysis: complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2009;97(2):421–6.

    Article  CAS  Google Scholar 

  59. Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP2.0 software. J Therm Anal Calorim. 2016; 126(2):919–32.

  60. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  PubMed  CAS  Google Scholar 

  61. Cai J, Liu R. Kinetic analysis of solid-state reactions: a general empirical kinetic model. Ind Eng Chem Res. 2009;48:3249–53.

    Article  CAS  Google Scholar 

  62. Gibson RL, Simmons MJH, Stitt EH, West J, Wilkinson SK, Gallen RW. Kinetic modelling of thermal processes using a modified Sestak–Berggren equation. Chem Eng J. 2021;408: 127318.

    Article  CAS  Google Scholar 

  63. Naya S, Cao R, Lopez de Ullibarri I, Artiaga R, Barbadillo F, Garcia A. Logistic mixture versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20:158–63.

    Article  CAS  Google Scholar 

  64. Cao R, Naya S, Artiaga R, Garcia A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Poly Degrad Stab. 2004;85:667–74.

    Article  CAS  Google Scholar 

  65. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curve. J Therm Anal Calorim. 2007;87:223–7.

    Article  CAS  Google Scholar 

  66. Rios-Fachal M, Garcia-Fernandez C, Lopez-Beceiro J, Gomez-Barreiro S, Tarrio-Saavedra J, Ponton A, Artiaga R. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.

  67. Tarrio-Saavedra J, Lopez-Beceiro J, Naya S, Francisco-Fernandez M, Artiaga R. Simulation study for generalized logistic function in thermal data modeling. J Therm Anal Calorim. 2014;118:1253–68.

    Article  CAS  Google Scholar 

  68. Sestak J. Sestak–Berggren equation: now questioned but formerly celebrated—what is right. Commentary on the Burnham paper on logistic equations in kinetics. J. Therm. Anal. Calorim. 2017;127:1117–23.

  69. Burnham AK. Response to statements by Professor Sestak concerning logistic equations in kinetics. J Therm Anal Calorim. 2017;127:1127–9.

    Article  CAS  Google Scholar 

  70. Militky J, Sestak J. On the eliminating attempts toward Sestak–Berggren equation. J Therm Anal Calorim. 2017;127:1131–3.

    Article  CAS  Google Scholar 

  71. Lebesgue H. Lecons sur 'integration et la recherce des fonctions primitives. Gauthiers-Villars. 1904 (2nd Edition, 1928).

  72. Lang S. Analysis II. Co.: Addison-Wesley Publ; 1969.

    Google Scholar 

  73. Niculescu CP. Fundamentals of mathematical analysis. Vol. 1, Editura Academiei Romane; 1996.

  74. Choudary ADR, C.P. Niculescu. Real analysis on intervals. Springer, New Delhi, xi + 525; 2014.

  75. Schollhorn R. Solid-state chemistry: restoring the balance. Angew Chem Int Ed. 1996;35:2338–2238.

    Article  Google Scholar 

  76. Brown ME. Steps in a minefield: Some kinetic aspects of thermal analysis. J Therm Anal. 1997;49:17–32.

    Article  CAS  Google Scholar 

  77. Brown ME, Dollimore D, Gallway AK. Comprehensive chemical kinetics. Elsevier. 1980;22.

  78. Skrdla PJ. Can we trust kinetic methods of thermal analysis? Analyst. 2020;145:745–9.

    Article  PubMed  CAS  Google Scholar 

  79. Malek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  CAS  Google Scholar 

  80. Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  CAS  Google Scholar 

  81. Malek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  82. Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  CAS  Google Scholar 

  83. Brown ME. The Prout-Tompkins rate equation in solid-state kinetics. Thermochim Acta. 1997;300(1–2):93–106.

    Article  CAS  Google Scholar 

  84. Malek J, Mitsuhashi T, Ramirez-Castellanos J, Matsui Y. Calorimetric and high-resolution electron microscopy study of nanocrystallization in zirconia gel. J Mater Res. 1999;14(5):1834–43.

    Article  CAS  Google Scholar 

  85. Malek J, Cernoskova E, Svejka R, Sestak J, van der Plaats G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280–281:353–61.

  86. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  87. Orfao JJM. Review and evaluation of the approximations to the temperature integral. AIChE J. 2007;53(11):2905–15.

    Article  CAS  Google Scholar 

  88. Rotaru A. Thermal behaviour of some solid combustibles and the non-isothermal kinetics of their decomposition and burning. PhD Thesis (in romanian). Politehnica University of Bucharest; 2011.

  89. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    Article  CAS  Google Scholar 

  90. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solidstate reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  91. Niculescu CP, Roventa I. Relative convexity and its applications. Aequationes Math. 2015;89(5):1389–400.

    Article  Google Scholar 

  92. Tomellini M. A model kinetics for nucleation and diffusion-controlled growth of immiscible alloys. J Mater Sci. 2008;43:7102–14.

    Article  CAS  Google Scholar 

  93. Kelton KF. Diffusion-influenced nucleation: a case study of oxygen precipitation in silicon. Philos Trans R Soc A Math Phys Eng Sci. 2013;361(1804):429–46.

  94. Sarrion B, Perejon A, Sanchez-Jimenez PE, Perez-Maqueda LA, Valverde JM. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage. J CO2 Utilization. 2018;28:374–84.

  95. Arcenegui-Troya J, Sanchez-Jimenez PE, Perejon A, Valverde JM, Chacartegui R, Perez-Maqueda LA. Calcium-looping performance of biomineralized CaCO3 for CO2 capture and thermochemical energy storage. Ind Eng Chem Res. 2020;59(29):12924–33.

    Article  CAS  Google Scholar 

  96. Sanchez-Jimenez PE, Perejon A, Criado JM, Dianez MJ, Perez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly (vinyl chloride). Polymer. 2010;51(17):3998–4007.

    Article  CAS  Google Scholar 

  97. Sestak J. Chapters 8 & 9 of Part I. Thermal analysis and thermodynamic properties of solids, 2nd Edition. ISBN: 9780323855372. Elsevier; 2021.

Download references

Acknowledgements

The work of I. Roventa has been supported by a grant of the Romanian Ministry of Research, Innovation and Digitalization (MCID), project number 22–Nonlinear Differential Systems in Applied Sciences, within PNRR-III-C9-2022-I8.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by AR and IR. Methodology was provided by IR and AR. Investigation was done by IR, AR and LAPM. Validation was given by LAPM, AR and IR. Writing was carried out by AR and IR.

Corresponding author

Correspondence to Andrei Rotaru.

Ethics declarations

Conflict of interest

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovenţa, I., Perez-Maqueda, L.A. & Rotaru, A. Advancements in the integration and understanding of the Sestak–Berggren generalized conversion function for heterogeneous kinetics. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-023-12727-8

Keywords

Navigation