Skip to main content
Log in

Crystallization behavior of 70GeS2–20In2S3–10CsI chalcohalide glass with silver addition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization behavior of the 70GeS2–20In2S3–10CsI glass introduced with 2 mol% Ag2S system has been studied under non-isothermal condition. The beginning of transmission is shifted toward longer wavelength as a function of annealing temperature. Thermal properties were measured by the differential scanning calorimeter. From the heating rate dependence of crystallization temperature, the activation energy (E c) for crystallization and the crystallization rate constant (K) were calculated. The K value of 2.44 × 109 for the In2S3 phase is about 28 times larger than the second CP, this is why the controllable crystallization to transparent chalcogenide glass-ceramics with sole In2S3 crystallites can be achieved. By heat treatment with various temperatures, the hardness of the glass enhanced from 204 to 230.8 kg mm−2, while retained the transmittance of the 8–11 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanghera JS, Shaw LB, Aggarwal ID. Applications of chalcogenide glass optical fibers. CR Chim. 2002;5(12):873–83.

    Article  CAS  Google Scholar 

  2. Yang Z, Luo L, Chen W. Red color GeSe2 based chalcohalide glasses for infrared optics. J Am Ceram Soc. 2006;89(7):2327–9.

    CAS  Google Scholar 

  3. Delaizir G, Lucas P, Zhang X, Ma H, Bureau B, Lucas J. Infrared glass–ceramics with fine porous surfaces for optical sensor applications. J Am Ceram Soc. 2007;90(7):2073–7.

    Article  CAS  Google Scholar 

  4. Zakery A, Elliott S. Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids. 2003;330(1):1–12.

    Article  CAS  Google Scholar 

  5. Tao G, Guo H, Feng L, Lu M, Wei W, Peng B. Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration. J Am Ceram Soc. 2009;92(10):2226–9.

    Article  CAS  Google Scholar 

  6. Tao G, Shabahang S, Banaei E-H, Kaufman JJ, Abouraddy AF. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt Lett. 2012;37(13):2751–3.

    Article  CAS  Google Scholar 

  7. Zhang X, Calvez L, Seznec V, Ma H, Danto S, Houizot P, et al. Infrared transmitting glasses and glass–ceramics. J Non-Cryst Solids. 2006;352(23):2411–5.

    Article  CAS  Google Scholar 

  8. Calvez L, Ma HL, Lucas J, Zhang XH. Selenium based glasses and glass ceramics transmitting light from the visible to the far-IR. Adv Mater. 2007;19(1):129–32.

    Article  CAS  Google Scholar 

  9. Zhang X, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. J Non-Cryst Solids. 2003;326:519–23.

    Article  Google Scholar 

  10. Zhu SZ, Ma HL, Matecki M, Zhang XH, Adam JL, Lucas J. Controlled crystallization of GeS2–Sb2S3–CsCl glass for fabricating infrared transmitting glass–ceramics. J Non-Cryst Solids. 2005;351(40–42):3309–13.

    Article  CAS  Google Scholar 

  11. Lin C, Calvez L, Rozé M, Tao H, Zhang X, Zhao X. Crystallization behavior of 80GeS2·20Ga2S3 chalcogenide glass. Appl Phys A. 2009;97(3):713–20.

    Article  CAS  Google Scholar 

  12. Shen X, Nie Q, Xu T, Dai S, Wang X, Chen F. Crystallization behavior of GeSe2–Ga2Se3–CsI glasses studied by differential thermal analysis. Phys B. 2009;404(2):223–6.

    Article  CAS  Google Scholar 

  13. Hongli M, Calvez L, Bureau B, Le Floch M, Zhang X, Jacques L. Crystallization study of infrared transmitting glass ceramics based on GeS2–Sb2S3–CsCl. J Phys Chem Solids. 2007;68(5–6):968–71.

    Google Scholar 

  14. Rozé M, Calvez L, Ledemi Y, Allix M, Matzen G, Zhang X-H. Optical and mechanical properties of glasses and glass–ceramics based on the Ge–Ga–Se system. J Am Ceram Soc. 2008;91(11):3566–70.

    Article  Google Scholar 

  15. Zhang X, Hongli MA, Lucas J. A new class of infrared transmitting glass–ceramics based on controlled nucleation and growth of alkali halide in a sulphide based glass matrix. J Non-Cryst Solids. 2004;337(2):130–5.

    Article  CAS  Google Scholar 

  16. Seznec V, Ma H, Zhang X, Nazabal V, Adam J-L, Qiao X, et al. Spectroscopic properties of Er3+ doped chalco-halide glass ceramics. Int Soc Optics Photonics. 2006;B(6116):B1–9.

    Google Scholar 

  17. Qi J, Xu Y, Wei S, Chen F, Lin C, Xu T, et al. Luminescence properties of nanocrystals composited Er3+ ions doped Ge–In–S–CsI glasses. J Chin Ceram Soc. 2013;41(7):1004–8.

    CAS  Google Scholar 

  18. Lu XC, Li HY. Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses. J Therm Anal Calorim. 2014;115(2):1089–97.

    Article  CAS  Google Scholar 

  19. Bansal NP, Hyatt MJ. Crystallization kinetics of BaO–Al2O3–SiO2 glasses. J Mater Res. 1989;4(1257):65.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61205181, 61308092, 61108057), International Science & Technology Cooperation Program of China (Grant No. 2011DFA12040), National Program on Key Basic Research Project (973 Program, Grant No. 2012CB722703), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. It was also sponsored by K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinsheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Xu, Y., Chen, L. et al. Crystallization behavior of 70GeS2–20In2S3–10CsI chalcohalide glass with silver addition. J Therm Anal Calorim 117, 1271–1276 (2014). https://doi.org/10.1007/s10973-014-3936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3936-7

Keywords

Navigation