Skip to main content
Log in

Crystallization behavior of 80GeS2 ⋅ 20Ga2S3 chalcogenide glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glass-ceramics were fabricated from the 80GeS2⋅20Ga2S3 chalcogenide glass using an appropriate heat-treatment at a fairly low temperature (T g+30°C) for different durations. Compared with the base glass, they present much-improved thermal shock resistance and fracture toughness, and meanwhile remain an excellent mid-IR transmission in 2–10-μm spectral region. XRD results indicate that the enhanced mechanical properties are mainly due to the appearance of Ga2S3 crystals, and only a very small amount of GeS2 was precipitated on the surface. Bulk and powder samples heat-treated at 458°C for different durations were used to study the evolution of the two crystallization peaks using DSC measurement. It is found that the precipitation of Ga2S3 phase is responsible for the exotherm of first crystallization peak and that of GeS2 phase for the second one. The crystallization mechanism was also examined using the nonisothermal method, and the considerably low activation energy (E c) and high crystallization rate constant (K) for the first crystallization peak illustrate a much easier precipitation of Ga2S3 phase than that of GeS2 phase, which is in good accordance with the ceramization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, E. Rosencher, Nature 432, 374 (2004)

    Article  ADS  Google Scholar 

  2. J. Lucas, Curr. Opin. Solid St. M 4, 181 (1999)

    Article  ADS  Google Scholar 

  3. P. Houizot, C. Boussard-Plédel, A.J. Faber, L.K. Cheng, B. Bureaul, P.A. Van Nijnatten, W.L.M. Gielesen, J. Pereira do Carmo, J. Lucas, Opt. Express 15, 12529 (2007)

    Article  ADS  Google Scholar 

  4. J.S. Sanghera, I.D. Aggarwal, J. Non-Crystal. Solids 256–257, 6 (1999)

    Article  Google Scholar 

  5. J.L. Adam, J. Non-Crystal. Solids 287, 401 (2001)

    Article  ADS  Google Scholar 

  6. A. Zakery, S.R. Elliott, J. Non-Crystal. Solids 330, 1 (2003)

    Article  ADS  Google Scholar 

  7. B. Bureau, X.H. Zhang, F. Smektala, J.L. Adam, J. Troles, H.L. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, D.L. Coq, M.R. Riley, J.H. Simmons, J. Non-Crystal. Solids 345, 276 (2004)

    Article  ADS  Google Scholar 

  8. X.H. Zhang, L. Calvez, V. Seznec, H.L. Ma, S. Danto, P. Houizot, C. Boussard-Plèdel, J. Lucas, J. Non-Crystal. Solids 352, 2411 (2006)

    Article  ADS  Google Scholar 

  9. L. Calvez, H.L. Ma, J. Lucas, X.H. Zhang, Adv. Mater. 19, 129 (2007)

    Article  Google Scholar 

  10. C.G. Lin, H.Z. Tao, R.K. Pan, X.L. Zheng, G.P. Dong, H.C. Zang, X.J. Zhao, Chem. Phys. Lett. 460, 125 (2008)

    Article  ADS  Google Scholar 

  11. C.G. Lin, H.Z. Tao, X.L. Zheng, R.K. Pan, H.C. Zang, X.J. Zhao, Opt. Lett. 34, 437 (2009)

    Article  ADS  Google Scholar 

  12. K.F. Kelton, Mat. Sci. Eng. A-Struct. 226–228, 142 (1997)

    Article  Google Scholar 

  13. C.S. Ray, Q.Z. Yang, W.H. Huang, D.E. Day, J. Am. Ceram. Soc. 79, 3155 (1996)

    Article  Google Scholar 

  14. S. Surinach, M.D. Baro, M.T. Clavaguera-Mora, N. Clavaguera, J. Mater. Sci. 19, 3005 (1984)

    Article  ADS  Google Scholar 

  15. M.A. El-Oyoun, J. Phys. D: Appl. Phys. 33, 2211 (2000)

    Article  ADS  Google Scholar 

  16. J. Shánělová, J. Málek, M.D. Alcalá, J.M. Criado, J. Non-Crystal. Solids 351, 557 (2005)

    Article  ADS  Google Scholar 

  17. D. Švadlák, Z. Zmrhalová, P. Pustková, J. Málek, L.A. Pérez-Maqueda, J.M. Criado, J. Non-Crystal. Solids 354, 3354 (2008)

    Article  ADS  Google Scholar 

  18. L. Calvez, H.L. Ma, J. Lucas, P. Glouannec, X.H. Zhang, J. Non-Crystal. Solids 353, 4702 (2007)

    Article  ADS  Google Scholar 

  19. S.Z. Zhu, H.L. Ma, L. Calvez, X.H. Zhang, J. Lucas, J.L. Adam, H.X. Shang, T. Rouxel, J. Non-Crystal. Solids 353, 1298 (2007)

    Article  ADS  Google Scholar 

  20. S.Z. Zhu, H.L. Ma, M. Matecki, X.H. Zhang, J.L. Adam, J. Lucas, J. Non-Crystal. Solids 351, 3309 (2005)

    Article  ADS  Google Scholar 

  21. Z.G. Ivanova, R. Ganesan, Z. Anevaa, E.S.R. Gopal, Mat. Sci. Eng. B-Solid 122, 152 (2005)

    Article  Google Scholar 

  22. R. Balda, S. García-Revilla, J. Fernández, V. Seznec, V. Nazabal, X.H. Zhang, J.L. Adam, M. Allix, G. Matzen, Opt. Mater. 31, 760 (2009)

    Article  ADS  Google Scholar 

  23. J.P. Guin, T. Rouxel, J.C. Sangleboeuf, I. Melscoët, J. Lucas, J. Am. Ceram. Soc. 85, 1545 (2002)

    Article  Google Scholar 

  24. F. Xia, X.H. Zhang, J. Ren, G.R. Chen, H.L. Ma, J.L. Adam, J. Am. Ceram. Soc. 89, 2154 (2006)

    Google Scholar 

  25. L. Calvez, M. Rozé, Y. Ledemi, H.L. Ma, J. Lucas, M. Allix, G. Matzen, X.H. Zhang, J. Ceram. Soc. Jpn. 116, 1079 (2007)

    Article  Google Scholar 

  26. C.S. Ray, X.Y. Fang, D.E. Day, J. Am. Ceram. Soc. 83, 865 (2000)

    Article  Google Scholar 

  27. N.P. Bansal, M.J. Hyatt, J. Mater. Res. 4, 1257 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changgui Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Calvez, L., Rozé, M. et al. Crystallization behavior of 80GeS2 ⋅ 20Ga2S3 chalcogenide glass. Appl. Phys. A 97, 713–720 (2009). https://doi.org/10.1007/s00339-009-5304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5304-1

PACS

Navigation