Skip to main content
Log in

Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization kinetics of Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses was studied using differential scanning calorimetry (DSC) at four different heating rates under non-isothermal condition. The glass transition temperature T g, the onset temperature of crystallization T x, and the peak temperature of crystallization T p of the two metallic glasses were determined from DSC curves. The values of various kinetic parameters such as the activation energy of glass transition E g, activation energy of crystallization E p, Avrami exponent n and dimensionality of growth m were evaluated from the dependence of T g and T p on the heating rate. The values of E g and E p, calculated from many different models, are found to be in good agreement with each other. The average values of the Avrami exponent n are (2.8 ± 0.4) for Cu50Zr43Al7 metallic glass and (4.2 ± 0.3) for (Cu50Zr43Al7)95Be5 metallic glass, which are consistent with the mechanism of two-dimensional growth and three-dimensional growth, respectively. Finally, the parameter H r, S, and crystallization enthalpy ΔH c are introduced to estimate the glass-forming ability and thermal stability of metallic glasses. The result shows that the addition of Be improves the glass-forming ability and thermal stability of Cu50Zr43Al7 metallic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cheung TL, Shek CH. Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. J Alloy Compd. 2007;434–435:71–4. doi:10.1016/j.jallcom.2006.08.109.

    Article  Google Scholar 

  2. Suryanarayana C, Inoue A. Bulk metallic glasses. Boca Raton: CRC Press; 2011.

    Google Scholar 

  3. Wang Q, Wang YM, Qiang JB, Zhang XF, Shek CH, Dong C. Composition optimization of the Cu-based Cu–Zr–Al alloys. Intermetallics. 2004;12(10–11):1229–32. doi:10.1016/j.intermet.2004.07.002.

    Article  CAS  Google Scholar 

  4. Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater Trans. 2002;43(11):2921–5.

    Article  CAS  Google Scholar 

  5. Malekan M, Shabestari SG, Gholamipour R, Seyedein SH. Effect of Ge addition on mechanical properties and fracture behavior of Cu–Zr–Al bulk metallic glass. J Alloy Compd. 2009;484(1–2):708–11. doi:10.1016/j.jallcom.2009.05.023.

    Article  CAS  Google Scholar 

  6. Qin C, Zhang W, Kimura H, Asami K, Inoue A. New Cu–Zr–Al–Nb bulk glassy alloys with high corrosion resistance. Mater Trans. 2004;45(6):1958–61.

    Article  CAS  Google Scholar 

  7. Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater Trans-JIM. 1993;34:1234.

    CAS  Google Scholar 

  8. Sung DS, Kwon OJ, Fleury E, Kim KB, Lee JC, Kim DH, et al. Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met Mater Int. 2004;10(6):575–9. doi:10.1007/BF03027421.

    Google Scholar 

  9. Xu D, Duan G, Johnson WL. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett. 2004;92(24):245504.

    Article  Google Scholar 

  10. Kim KH, Lee SW, Ahn JP, Fleury E, Kim YC, Lee JC. A Cu-based amorphous alloy with a simultaneous improvement in its glass forming ability and plasticity. Met Mater Int. 2007;13(1):21–4. doi:10.1007/BF03027818.

    Google Scholar 

  11. Lee SW, Lee SC, Kim YC, Fleury E, Lee JC. Design of a bulk amorphous alloy containing Cu–Zr with simultaneous improvement in glass-forming ability and plasticity. J Mater Res. 2007;22(02):486–92.

    Google Scholar 

  12. Kim YC, Lee JC, Cha PR, Ahn JP, Fleury E. Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses. Mater Sci Eng, A. 2006;437(2):248–53.

    Google Scholar 

  13. Xu JF, Liu F, Jian ZY, Chang FE, Zhang K, Ma YZ. Phase transformation kinetics of Ge23Se67Sb10 glass. J Non-Cryst Solids. 2010;356(41–42):2198–202. doi:10.1016/j.jnoncrysol.2010.08.018.

    Google Scholar 

  14. Patial BS, Thakur N, Tripathi SK. A non-isothermal crystallization study of Se85Te15 chalcogenide glass using differential scanning calorimetry. Phys Scripta. 2012;85(4):045603. doi:10.1088/0031-8949/85/04/045603.

    Article  Google Scholar 

  15. Abdel-Rahim MA. Crystallization kinetics of selenium–tellerium glasses. J Mater Sci. 1992;27(7):1757–61. doi:10.1007/BF01107200.

    Article  CAS  Google Scholar 

  16. Joshi SR, Pratap A, Saxena NS, Saksena MP, Kumar A. Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass. J Mater Sci Lett. 1994;13(2):77–9. doi:10.1007/BF00416803.

    Article  CAS  Google Scholar 

  17. Rabinal MK, Sangunni KS, Gopal ESR. Chemical ordering in Ge20Se80−χInχ glasses. J Non-Cryst Solids. 1995;188(1–2):98–106. doi:10.1016/0022-3093(94)00699-7.

    Google Scholar 

  18. Tiwari R, Mehta N, Shukla R, Kumar A. Kinetic parameters of glass transition in glassy Se1−x Sb x Alloys. Turkish J Phys. 2005;29:233–42.

    CAS  Google Scholar 

  19. Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110(2):567–71. doi:10.1007/s10973-012-2527-8.

    Article  CAS  Google Scholar 

  20. Hancock B, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7. doi:10.1023/A:1018941810744.

    Article  CAS  Google Scholar 

  21. Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M10 (M = In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim. 2007;87(2):345–50. doi:10.1007/s10973-005-7411-3.

    Article  Google Scholar 

  22. Tripathi SK, Patial BS, Thakur N. Glass transition and crystallization study of chalcogenide Se70Te15In15 glass. J Therm Anal Calorim. 2011;107(1):31–8. doi:10.1007/s10973-011-1724-1.

    Article  Google Scholar 

  23. Naqvi SF, Saxena NS. Kinetics of phase transition and thermal stability in Se80−x Te20Zn x (x = 2, 4, 6, 8, and 10) glasses. J Therm Anal Calorim. 2011;108(3):1161–9. doi:10.1007/s10973-011-1857-2.

    Article  Google Scholar 

  24. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23(2–3):173–7. doi:10.1016/0025-5416(76)90189-0.

    Article  CAS  Google Scholar 

  25. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78(26):2673–7. doi:10.1021/j100619a008.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. doi:10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  27. Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90−x In10Sb x (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2873-6.

  28. He S, Liu Y, Huang B, Li Z, Wu H. Effect of Zr on glass-forming ability and crystallization kinetics of Y56Al24Co20 metallic glass. J Mater Process Technol. 2008;204(1–3):179–83. doi:10.1016/j.jmatprotec.2007.11.030.

    Article  CAS  Google Scholar 

  29. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19(1):291–6. doi:10.1007/BF00553020.

    Article  CAS  Google Scholar 

  30. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13(2):283–92. doi:10.1007/BF01912301.

    Article  CAS  Google Scholar 

  31. Abu El-Oyoun M. DSC studies on the transformation kinetics of two separated crystallization peaks of Si12.5Te87.5 chalcogenide glass: an application of the theoretical method developed and isoconversional method. Mater Chem Phys. 2011;131(1–2):495–506. doi:10.1016/j.matchemphys.2011.10.009.

    Article  CAS  Google Scholar 

  32. Pratap A, Raval KG, Gupta A, Kulkarni SK. Nucleation and growth of a multicomponent metallic glass. B Mater Sci. 2000;23(3):185–8. doi:10.1007/BF02719907.

    Article  CAS  Google Scholar 

  33. Soltan AS. A study of DSC non-isothermal pre-crystallization kinetics of Pb10Se90 glass using isoconversional kinetic analysis. Phys B. 2010;405(3):965–8. doi:10.1016/j.physb.2009.10.032.

    Article  CAS  Google Scholar 

  34. Colmenero J, Barandiaran J. Crystallization of Al23Te77 glasses. J Non-Cryst Solids. 1979;30(3):263–71.

    Article  CAS  Google Scholar 

  35. Kaur G, Komatsu T. Crystallization behavior of bulk amorphous Se–Sb–In system. J Mater Sci. 2001;36(18):4531–3. doi:10.1023/A:1017951307399.

    Article  CAS  Google Scholar 

  36. Tomolya K, Janovszky D, Sveda M, Hegman N, Solyom J, Roosz A. CuZrAl amorphous alloys prepared by casting and milling. J Phys. 2009;144:012032. doi:10.1088/1742-6596/144/1/012032.

    Google Scholar 

  37. Al-Ghamdi AA, Alvi MA, Khan SA. Non-isothermal crystallization kinetic study on Ga15Se85–x Ag x chalcogenide glasses by using differential scanning calorimetry. J Alloy Compd. 2011;509(5):2087–93. doi:10.1016/j.jallcom.2010.10.145.

    Article  CAS  Google Scholar 

  38. Ahmad A, Khan SA, Al-Ghamdi AA, Al-Agel FA, Sinha K, Zulfequar M, et al. Kinetics of non-isothermal crystallization of ternary Se80Te20−x Zn x glasses. J Alloy Compd. 2010;497(1–2):215–20. doi:10.1016/j.jallcom.2010.03.015.

    Article  CAS  Google Scholar 

  39. Mehta N, Agarwal P, Kumar A. Calorimetric studies of glass forming ability and thermal stability in a-Se80Te19.5M0.5 (M = Ag, Cd, In, Sb) alloys. Eur Phys J. 2005;31(03):153–8. doi:10.1051/epjap:2005048.

    CAS  Google Scholar 

  40. Singh AK, Mehta N, Singh K. Effect of indium additive on glass-forming ability and thermal stability of Se–Zn–Te chalcogenide glasses. Philos Mag Lett. 2010;90(3):201–8.

    Article  CAS  Google Scholar 

  41. Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B. 1972;22(11):1187–93. doi:10.1007/BF01690134.

    Article  Google Scholar 

  42. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41(9):1664–72. doi:10.1016/j.materresbull.2006.02.024.

    Article  CAS  Google Scholar 

  43. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19–20:11–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to acknowledge the collaboration with De-Wang Li and stimulating discussions with Rong-Hai Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ying Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X.C., Li, H.Y. Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses. J Therm Anal Calorim 115, 1089–1097 (2014). https://doi.org/10.1007/s10973-013-3364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3364-0

Keywords

Navigation