Skip to main content
Log in

Characterisation of physicochemical properties of ((As2Se3)0.6(AgI)0.4)100−x(GeTe)x chalcohalide glasses for infrared devices: effect of GeTe addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the effect of GeTe content on properties of a chalcohalide glassy system ((As2Se3)0.6(AgI)0.4)100−x(GeTe)x (x = 0, 15, 55 and 70 at.%). The study was based on the model of chemical bond approach. The results showed that the molar volume increased, whereas the packing density decreased, with increasing the GeTe concentration in an As–Se–Ag–I–Ge–Te matrix. The average coordination number, number of constraints and cross-linking density increased while the floppy modes and lone pair electrons were decreased. The cohesive energy, average heat of atomisation and mean bond energy also increased. A linear relationship was found between the cohesive energy to the heat of atomisation of the studied glassy system. In addition, we present two different estimations of the band gap energy. The positions of conduction and valence bands positions were determined. The gap varied between 1.098 and 1.197 eV; thus, all compositions can be useful for IR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

Code availability

Not applicable.

References

  1. Y.S. Tveryanovich, T.R. Fazletdinov, A.S. Tverjanovich, D.V. Pankin, E.V. Smirnov, O.V. Tolochko, M.S. Panov, M.F. Churbanov, I.V. Skripachev, M.M. Shevelko, Increasing the plasticity of chalcogenide glasses in the system Ag2Se–Sb2Se3–GeSe2. Chem. Mater 34, 2743 (2022). https://doi.org/10.1021/acs.chemmater.1c04312

    Article  CAS  Google Scholar 

  2. D. Chen, G. Zhou, S. Sun, L. Tan, S. Kang, C. Lin, Glass formation and optical properties of Sn modified GeS2-Ga2S3-CsCl chalcogenide glasses. Infr. Phys. & Tech. 122, 104086 (2022). https://doi.org/10.1016/j.infrared.2022.104086

    Article  CAS  Google Scholar 

  3. E. Sharma, P.B. Barman, P. Sharma, On the structural and optical aspects of GeTeSeGa thermally evaporated chalcogenides thin films for infrared applications. Europ. Phys. Jour. Plus 137, 358 (2022). https://doi.org/10.1140/epjp/s13360-022-02564-3

    Article  CAS  Google Scholar 

  4. I. Kebaili, The effect of adding CsCl content on physicochemical properties of (GeS2–Sb2S3)100–x(CsCl)x (0 ≤ x ≤ 40 mol%) chalcogenide glass ceramics. Opt. Mater. 119, 111363 (2021). https://doi.org/10.1016/j.optmat.2021.111363

    Article  CAS  Google Scholar 

  5. I. Boukhris, Compositional dependence of physicochemical properties of quaternary (0.9GeS2–0.1CdS)100–x(Sb2S3)x chalcogenide glasses for solar cells and near infrared devices. Mater. Today Commun. 27, 102414 (2021). https://doi.org/10.1016/j.mtcomm.2021.102414

    Article  CAS  Google Scholar 

  6. I. Kebaili, I. Boukhris, A. Dahshan, Investigation of the correlation between physico-chemical, optical and thermal properties of (GeS2)60(Sb2S3)40–x(CdCl2)x chalcohalide glasses. Phys. Scr. 95, 085704 (2020). https://doi.org/10.1088/1402-4896/aba2f9

    Article  CAS  Google Scholar 

  7. I. Boukhris, H.H. Hegazy, Impact of physicochemical properties on band gap energy and glass transition temperature of (GeS2)10(Sb2S3)90–x(AgI)x chalcohalide glasses for Near-IR applications. Phys. Scr. 96, 045701 (2021). https://doi.org/10.1088/1402-4896/abdc58

    Article  CAS  Google Scholar 

  8. A. El-Denglawey, A. Dahshan, K.A. Aly, Y.B. Saddeek, Physical and mechanical properties of ternary Ge-Se-Sb glasses for near-infrared applications. Phys. Scr. 96, 055805 (2021). https://doi.org/10.1088/1402-4896/abeba7

    Article  Google Scholar 

  9. A. Kumar, V. Singh, H. Singh, P. Sharma, N. Goyal, Electronic transport properties of (Se80Te20)100−xZnx (2 ≤ x ≤ 6) chalcogenide alloys. Phys B Cond. Matt. 555, 41–46 (2019). https://doi.org/10.1016/j.physb.2018.11.044

    Article  CAS  Google Scholar 

  10. M.R. Karim, H. Ahmad, S. Ghosh, B.M. Rahman, Design of dispersion-engineered As2Se3 channel waveguide for mid-infrared region supercontinuum generation. J. App. Phys. 123, 213101 (2018). https://doi.org/10.1063/1.5033494

    Article  CAS  Google Scholar 

  11. Y. Azhniuk, D. Solonenko, E. Sheremet, V.M. Dzhagan, Y. Loya, I.V. Grytsyshche, S. Schulze, M. Hietschold, A.V. Gomonnai and.R.T. Zahn, Structural and optical study of Zn-doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Adv. 9, 065212 (2019). https://doi.org/10.1063/1.5086974

    Article  CAS  Google Scholar 

  12. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019). https://doi.org/10.1038/s41578-018-0076-x

    Article  CAS  Google Scholar 

  13. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2009). https://doi.org/10.1038/nmat2009

    Article  CAS  Google Scholar 

  14. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, vol. 155 (Springer, Berlin, 2007)

    Book  Google Scholar 

  15. J. Bicerano, S.R. Ovshinsky, Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J. Non-Crys. Sol. 74, 75–84 (1985). https://doi.org/10.1016/0022-3093(85)90402-8

    Article  CAS  Google Scholar 

  16. S. El-Sayed, H. Saad, G. Amin, F. Hafez, M. Abd-El-Rahman, Physical evolution in network glasses of the Ag–As–Te system. J. Phys. Chem. Sol. 68, 1040–1045 (2007). https://doi.org/10.1016/j.jpcs.2006.12.033

    Article  CAS  Google Scholar 

  17. L. Tichý, A. Tříska, H. Ticha, M. Frumar, J. Klikorka, The composition dependence of the gap in amorphous films of SixGe1−x, SbxSe1−x and AsxTe1−x systems. Sol. Stat. Commun. 41, 751–754 (1982). https://doi.org/10.1016/0038-1098(82)91131-0

    Article  Google Scholar 

  18. A. Dahshan, K.A. Aly, Characterization of new quaternary chalcogenide As–Ge–Se–Sb thin films. J. Philo. Mag. 88, 361–372 (2008). https://doi.org/10.1080/14786430701846214

    Article  CAS  Google Scholar 

  19. V. Sadagopan, H. Gatos, On the relationship of semiconductor compound properties and the average heats of atomisation. J. Sol. Stat. Elec. 8, 529–534 (1965). https://doi.org/10.1016/0038-1101(65)90103-6

    Article  CAS  Google Scholar 

  20. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2012)

    Google Scholar 

  21. A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15−x Sbx Se50 Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. J. All. Comp. 798, 750–763 (2019). https://doi.org/10.1016/j.jallcom.2019.05.252

    Article  CAS  Google Scholar 

  22. G. Wang, Q. Nie, X. Shen, X. Wang, F. Chen, S. Dai, T. Xu, Effect of SnI2 on the thermal and optical properties of Ge–Se–Te glasses Infr. Phys. Tech. 55, 275–278 (2012). https://doi.org/10.1016/j.infrared.2012.03.011

    Article  CAS  Google Scholar 

  23. A. Ammar, A. Farid, S. Fouad, Optical and other physical characteristics of amorphous Ge–Se–Ag alloys Phys. B Cond. Matt. 307, 64–71 (2001). https://doi.org/10.1016/S0921-4526(01)00969-3

    Article  CAS  Google Scholar 

  24. C. Jiang, X. Wang, Q. Zhu, Q. Nie, M. Zhu, P. Zhang, S. Dai, X. Shen, T. Xu, C. Cheng, F. Liao, Z. Liu, X. Zhang, Improvements on the optical properties of Ge–Sb–Se chalcogenide glasses with iodine incorporation. J. Infr. Phys. Tech. 73, 54–61 (2015). https://doi.org/10.1016/j.infrared.2015.09.001

    Article  CAS  Google Scholar 

  25. J. Cheng, W. Chen, D. Ye, Novel chalcohalide glasses in the As-Ge-Ag-Se-Te-I system. J. of Non-Cryst. Sol. 184, 124–127 (1995). https://doi.org/10.1016/0022-3093(94)00601-6

    Article  CAS  Google Scholar 

  26. V. Pamukchieva, A. Szekeres, K. Todorova, M. Fabian, E. Svab, Z. Revay, L. Szentmiklosi, Evaluation of basic physical parameters of quaternary Ge–Sb-(S, Te) chalcogenide glasses. J. Non-Crys. Sol. 355, 2485–2490 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.08.028

    Article  CAS  Google Scholar 

  27. J.C. Phillips, M.F. Thorpe, Constraint theory, vector percolation and glass formation. Sol. Stat. Commun. 53, 699–702 (1985). https://doi.org/10.1016/0038-1098(85)90381-3

    Article  CAS  Google Scholar 

  28. J.C. Phillips, Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J. Non-Crys. Sol. 34, 153–181 (1979). https://doi.org/10.1016/0022-3093(79)90033-4

    Article  CAS  Google Scholar 

  29. M.F. Thorpe, Continuous deformations in random networks. J. Non-Crys. Sol. 57, 355–370 (1983). https://doi.org/10.1016/0022-3093(83)90424-6

    Article  CAS  Google Scholar 

  30. S.R. Ovshinsky, D. Adler, Local structure, bonding, and electronic properties of covalent amorphous semiconductors. J. Contem. Phys. 19, 109–126 (1978). https://doi.org/10.1080/00107517808210876

    Article  CAS  Google Scholar 

  31. S. Fouad, On the glass transition temperature and related parameters in the glassy GexSe1−x system. Phys. B: Cond. Matt. 293, 276–282 (2001). https://doi.org/10.1016/S0921-4526(00)00563-9

    Article  CAS  Google Scholar 

  32. S.M. El-Sayed, H.M. Saad, G.A. Ami, F.M. Hafez, M. Abd-El-Rahman, Physical evolution in network glasses of the Ag–As–Te system. J. Phys. Chem. Sol. 68, 1040–1045 (2007). https://doi.org/10.1016/j.jpcs.2006.12.033

    Article  CAS  Google Scholar 

  33. A.V. Kolobov, P. Fons, J. Tominaga, Vacancy-mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys. Phys. Rev. B 87, 165206 (2013). https://doi.org/10.1103/PhysRevB.87.165206

    Article  CAS  Google Scholar 

  34. P. Sharma, Glass-forming ability and rigidity percolation in SeTePb lone-pair semiconductors. App. Phys. A 122, 402 (2016). https://doi.org/10.1007/s00339-016-9960-7

    Article  CAS  Google Scholar 

  35. L. Zhenhua, Chemical bond approach to the chalcogenide glass forming tendency. J. Non. Cryst. Sol. 127, 298–305 (1991). https://doi.org/10.1016/0022-3093(91)90482-L

    Article  Google Scholar 

  36. H.H. Hegazy, A. Dahshan, K.A. Aly, Influence of Cu content on physical characterization and optical properties of new amorphous Ge–Se–Sb–Cu thin films. Mat. Res. Exp. 6, 025204 (2019). https://doi.org/10.1088/2053-1591/aaee4b

    Article  CAS  Google Scholar 

  37. I. Kebaili, I. Boukhris, R. Neffati, S. Znaidia, Y.B. Saddeek, K.A. Aly, A. Dahshan, Theoretical characterization and band gap tuning of Snx(GeSe2)100–x thin films. J. Mater. Chem. Phys. 251, 123133 (2020). https://doi.org/10.1016/j.matchemphys.2020.123133

    Article  CAS  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compd. 648, 280–290 (2015). https://doi.org/10.1016/j.jallcom.2015.06.231

    Article  CAS  Google Scholar 

  39. A. Dahshan, K.A. Aly, Characterization of new quaternary Ge20Se60Sb20−xAgx (0 ≤ x ≤ 20 at.%) glasses. J. Non-Cryst. Sol. 408, 62–65 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.10.015

    Article  CAS  Google Scholar 

  40. Y.B. Saddeek, L.A.E. Latif, Effect of TeO2 on the elastic moduli of sodium borate glasses. Phys. B Cond. Matt. 348, 475–484 (2004). https://doi.org/10.1016/j.physb.2004.02.001

    Article  CAS  Google Scholar 

  41. N. El-Kabany, N.M. Hafiz, Covalent bond connectivity, medium range order and physical properties of GexIn8Se92−x glasses. Sol. Stat. Sci. 26, 83–88 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.08.011

    Article  CAS  Google Scholar 

  42. L. Tichý, H. Ticha, Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Sol. 189, 141–146 (1995). https://doi.org/10.1016/0022-3093(95)00202-2

    Article  Google Scholar 

  43. L. Tichý, H. Ticha, On the chemical threshold in chalcogenide glasses. J. Mater. Lett. 21, 313–319 (1994). https://doi.org/10.1016/0167-577X(94)90196-1

    Article  Google Scholar 

  44. M. Nunoshita, H. Arai, Energy-band gap and density of Si-As-Te amorphous semiconductors. J. Sol. Stat. Commun 11, 337–341 (1972). https://doi.org/10.1016/0038-1098(72)90245-1

    Article  CAS  Google Scholar 

  45. M. Yamaguchi, The relationship between optical gap and chemical composition in chalcogenide glasses. J. Philo. Mag. B 51, 651–663 (1985). https://doi.org/10.1080/13642818508243153

    Article  CAS  Google Scholar 

  46. P. Manca, A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure. J. Phys. Chem. Sol. 20, 268–273 (1961). https://doi.org/10.1016/0022-3697(61)90013-0

    Article  CAS  Google Scholar 

  47. M. Askari, M. Soltani, E. Saion, W.M.M. Yunus, H.M. Erfani, M. Dorostkar, Structural and optical properties of PVP-capped nanocrystalline ZnxCd1−xS solid solutions. Superlatt. Microstruct. 81, 193–201 (2015). https://doi.org/10.1016/j.spmi.2015.01.011

    Article  CAS  Google Scholar 

  48. R. Xie, J. Su, Y. Liu, L. Guo, Optical, structural and photoelectrochemical properties of CdS1−xSex semiconductor films produced by chemical bath deposition. Int. J. Hydro. Ene. 39, 3517–3527 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.088

    Article  CAS  Google Scholar 

  49. C. Xing, Y. Zhang, W. Yan, L. Guo, Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydro. Ene. 31, 2018–2024 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number (174/43).

Funding

Funding was provided by King Khalid University (Grant No.: R.G.P/174/43)

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Imed Boukhris.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhris, I. Characterisation of physicochemical properties of ((As2Se3)0.6(AgI)0.4)100−x(GeTe)x chalcohalide glasses for infrared devices: effect of GeTe addition. J Mater Sci: Mater Electron 33, 14086–14096 (2022). https://doi.org/10.1007/s10854-022-08339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08339-x

Navigation