Skip to main content
Log in

Evaluating a four-directional benzene-centered aliphatic polyamine curing agent for epoxy resins

Isothermal curing behavior and dynamic mechanical property

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A four-directional benzene-centered aliphatic polyamine, MXBDP, with high functionality and low volatility, is used to cure epoxy resin (DGEBA). Herein we originally report the isothermal cure kinetics and dynamic mechanical properties of DGEBA/MXBDP. Differential scanning calorimetry confirms that MXDBP is more reactive than commercial linear metaxylenediamine and branched Jeffamine T-403 and the isothermal curing reaction is autocatalytic. The Kamal model is found to be able to well describe the curing rate up to the onset of diffusion control, and the excellent match over the whole conversion range is achieved using the extended Kamal model. Interestingly, the isoconversional kinetic analysis indicates that the effective reaction activation energy (E α ) changes substantially with conversion, and ultimately decreases to a very small value (<10 kJ mol−1) because of the diffusion-controlled reaction kinetics. Then, dynamic mechanical analysis reveals that DGEBA/MXBDP exhibits the higher α- and β-relaxation temperatures and the much higher crosslink density than DGEBA/metaxylenediamine. Our experiment results support that MXBDP has the high reactivity and improved thermal resistance in combination with the advantages of the high functionality, low volatility and decreased CO2 absorption. Therefore, MXBDP may be especially suitable for room temperature-cure epoxy coatings and adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wan J, Fan H, Li B-G, Xu C-J, Bu Z-Y. Synthesis and nonisothermal reaction of a novel acrylonitrile-capped poly(propyleneimine) dendrimer with epoxy resin. J Therm Anal Cal. 2011;103:685–92.

    Article  CAS  Google Scholar 

  2. Wan J, Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction, thermal stability and dynamic mechanical properties of epoxy system with novel nonlinear multifunctional polyamine hardener. Thermochim Acta. 2010;511:51–8.

    Article  CAS  Google Scholar 

  3. Wan J, Li B-G, Fan H, Bu Z-Y, Xu C-J. Nonisothermal reaction kinetics of DGEBA with four-armed starlike polyamine with benzene core (MXBDP) as novel curing agent. Thermochim Acta. 2010;510:46–52.

    Article  CAS  Google Scholar 

  4. Santiago D, Fernández-Francos X, Ramis X, Salla JM, Sangermano M. Comparative curing kinetics and thermal–mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethyleneimine) and an aliphatic triamine. Thermochim Acta. 2011;526:9–21.

    Article  CAS  Google Scholar 

  5. Wan J, Bu Z-Y, Xu C-J, Li B-G, Fan H. Learning about novel amine-adduct curing agents for epoxy resins: butyl-glycidylether-modified poly(propyleneimine) dendrimers. Thermochim Acta. 2011;519:72–82.

    Article  CAS  Google Scholar 

  6. Wan J, Li C, Bu Z-Y, Xu C-J, Li B-G, Fan H. A comparative study of epoxy resin cured with a linear diamine and a branched polyamine. Chem Eng J. 2012;188:160–72.

    Article  CAS  Google Scholar 

  7. Wan J, Bu Z-Y, Xu C-J, Li B-G, Fan H. Preparation, curing kinetics, and properties of a novel low-volatile starlike aliphatic-polyamine curing agent for epoxy resins. Chem Eng J. 2011;171:357–67.

    Article  CAS  Google Scholar 

  8. Huntsman. JEFFAMINE® amines as curing agents for epoxy resins in composites. Technical Bulletin 2008. http://www.huntsman.com.

  9. Cai H, Li P, Sui G, Yu Y, Li G, Yang X, Ryu S. Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC. Thermochim Acta. 2008;473:101–5.

    Article  CAS  Google Scholar 

  10. Perrin FX, Chaoui N, Margaillan A. Effects of octa(3-chloroammoniumpropyl)octasilsesquioxane on the epoxy self-polymerisation and epoxy–amine curing. Thermochim Acta. 2009;491:97–102.

    Article  CAS  Google Scholar 

  11. Morgan RJ, Kong F-M, Walkup CM. Structure–property relations of polyethertriamine-cured bisphenol-A-diglycidyl ether epoxies. Polymer. 1984;25:375–86.

    Article  CAS  Google Scholar 

  12. Morgan RJ, Walkup CM. Epoxy matrices for filament-wound carbon fiber composites. J Appl Polym Sci. 1987;34:37–46.

    Article  CAS  Google Scholar 

  13. Montserrat S, Cima I. Isothermal curing of an epoxy resin by alternating differential scanning calorimetry. Thermochim Acta. 1999;330:189–200.

    Article  CAS  Google Scholar 

  14. Calventus Y, Montserrat S, Hutchinson JM. Enthalpy relaxation of non-stoichiometric epoxy–amine resins. Polymer. 2001;42:7081–93.

    Article  CAS  Google Scholar 

  15. Cakić SM, Ristić IS, Jašo VM, Radičević RŽ, Ilić OZ, Simendić JKB. Investigation of the curing kinetics of alkyd–melamine–epoxy resin system. Prog Org Coat. 2012;73:415–24.

    Article  Google Scholar 

  16. Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978; 155–58.

  17. Wörner C, Mülhaupt R. Polynitrile- and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem Int Ed Engl. 1993;32:1306–8.

    Article  Google Scholar 

  18. Barton JM. The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions. Adv Polym Sci. 1985;72:111–54.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  20. Borchardt HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.

    Article  CAS  Google Scholar 

  21. Musa RK. Thermoset characterization for moldability analysis. Polym Eng Sci. 1974;14:231–9.

    Article  Google Scholar 

  22. Sourour S, Kamal MR. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics. Thermochim Acta. 1976;14:41–59.

    Article  CAS  Google Scholar 

  23. Ma Z, Gao J. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine. J Phys Chem B. 2006;110:12380–3.

    Article  CAS  Google Scholar 

  24. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C: Polym Symposia. 1964;6:183–95.

    Article  Google Scholar 

  25. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  26. Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208:1592–7.

    Article  CAS  Google Scholar 

  27. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  28. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sec A. 1966;70A:487–523.

    Article  Google Scholar 

  29. Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009;30:1986–91.

    Article  CAS  Google Scholar 

  30. Vyazovkin S. Advanced isoconversional method. J Therm Anal Cal. 1997;49:1493–9.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  32. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  33. Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry (Vol. 5). London: Elsevier; 2008.

    Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N. Kinetic analysis of isothermal cures performed below the limiting glass transition temperature. Macromol Rapid Commun. 2000;21:85–90.

    Article  CAS  Google Scholar 

  35. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289–98.

    Article  CAS  Google Scholar 

  36. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Therm Anal Cal. 2006;83:45–51.

    Article  CAS  Google Scholar 

  37. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  38. Rozenberg BA. Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci. 1986;75:113–65.

    Article  Google Scholar 

  39. Lee J-Y, Shim M-J, Kim S-W. Effect of modified rubber compound on the cure kinetics of DGEBA/MDA system by Kissinger and isoconversional methods. Thermochim Acta. 2001;371:45–51.

    Article  CAS  Google Scholar 

  40. Zvetkov VL, Krastev RK, Samichkov VI. Rate equations in the study of the DSC kinetics of epoxy–amine reactions in an excess of epoxy. Thermochim Acta. 2008;478:17–27.

    Article  CAS  Google Scholar 

  41. Sanctuary R, Baller J, Zielinski B, Becker N, Kruger JK, Philipp M, Muller U, Ziehmer M. Influence of Al2O3 nanoparticles on the isothermal cure of an epoxy resin. J Phys Condens Matter. 2009;21:035118.

    Article  CAS  Google Scholar 

  42. Zvetkov VL, Comparative DSC. Kinetics of the reaction of DGEBA with aromatic diamines.: I. Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine. Polymer. 2001;42:6687–97.

    Article  CAS  Google Scholar 

  43. Perrin F-X, Nguyen TMH, Vernet J-L. Kinetic analysis of isothermal and nonisothermal epoxy–amine cures by model-free isoconversional methods. Macromol Chem Phys. 2007;208:718–29.

    Article  CAS  Google Scholar 

  44. Wise CW, Cook WD, Goodwin AA. Chemico-diffusion kinetics of model epoxy–amine resins. Polymer. 1997;38:3251–61.

    Article  CAS  Google Scholar 

  45. Wisanrakkit G, Gillham JK. The glass transition temperature (T g) as an index of chemical conversion for a high-T g amine/epoxy system: chemical and diffusion-controlled reaction kinetics. J Appl Polym Sci. 1990;41:2885–929.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxy-anhydride cure. Macromol Chem Phys. 1999;200:2294–303.

    Article  CAS  Google Scholar 

  47. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy–amine cures. Thermochim Acta. 2006;447:167–77.

    Article  CAS  Google Scholar 

  48. Cole KC, Hechler JJ, Noel D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis[4-(diglycidylamino)phenyl]methane and bis(4-aminophenyl) sulfone. Macromolecules. 1991;24:3098–110.

    Article  CAS  Google Scholar 

  49. Vyazovkin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy–amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun. 2003;24:1060–5.

    Article  CAS  Google Scholar 

  50. Paz-Abuin S, Pellin MP, Paz-Pazos M, Lopez-Quintela A. Influence of the reactivity of amine hydrogens and the evaporation of monomers on the cure kinetics of epoxy–amine: kinetic questions. Polymer. 1997;38:3795–804.

    Article  CAS  Google Scholar 

  51. Paz-Abuin S, Lopez-Quintela A, Pellin MP, Varela M, Prendes P. Autoacceleration and inhibition: free volume. Epoxy–amine kinetics. J Polym Sci Part A: Polym Chem. 1998;36:1001–16.

    Article  CAS  Google Scholar 

  52. Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy–amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29:1867–73.

    Article  CAS  Google Scholar 

  53. Stutz H, Mertes J. Influence of the structure on thermoset cure kinetics. J Polym Sci Part A: Polym Chem. 1993;31:2031–7.

    Article  CAS  Google Scholar 

  54. Stutz H, Mertes J, Neubecker K. Kinetics of thermoset cure and polymerization in the glass transition region. J Polym Sci, Part A: Polym Chem. 1993;31:1879–86.

    Article  CAS  Google Scholar 

  55. Howard SL. Introduction to physical polymer science. New York: Wiley; 2006.

    Google Scholar 

  56. Delatycki O, Shaw JC, Williams JG. Viscoelastic properties of epoxy–diamine networks. J Polym Sci Part B Polym Phys. 1969;7:753–62.

    CAS  Google Scholar 

  57. Paipetis SA, Theocaris PS, Marchese A. The dynamic properties of plasticized epoxies over a wide frequency range. Colloid Polym Sci. 1979;257:478–85.

    Article  CAS  Google Scholar 

  58. Ochi M, Okazaki M, Shimbo M. Mechanical relaxation mechanism of epoxide resins cured with aliphatic diamines. J Polym Sci Part B Polym Phys. 1982;20:689–99.

    Article  CAS  Google Scholar 

  59. John GW. The beta relaxation in epoxy resin-based networks. J Appl Polym Sci. 1979;23:3433–44.

    Article  Google Scholar 

  60. Pogany GA. Gamma relaxation in epoxy resins and related polymers. Polymer. 1970;11:66–78.

    Article  CAS  Google Scholar 

  61. Schroeder JA, Madsen PA, Foister RT. Structure/property relationships for a series of crosslinked aromatic/aliphatic epoxy mixtures. Polymer. 1987;28:929–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Postdoctoral Foundation of Zhejiang Province, China (Grant No. Bsh1201004), the Program for Changjiang Scholars and Innovative Research Team in University, China (PCSIRT) and the Major Research Project of Zhejiang Province, China (Grant No. 2006C11192). The authors would like to appreciate the reviewers for commenting on this article and providing the comments of great value.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Fan or Bo-Geng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, J., Li, C., Bu, ZY. et al. Evaluating a four-directional benzene-centered aliphatic polyamine curing agent for epoxy resins. J Therm Anal Calorim 114, 365–375 (2013). https://doi.org/10.1007/s10973-012-2863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2863-8

Keywords

Navigation