Skip to main content
Log in

Curing Behavior of 4,4′-Diglycidyloxybiphenyl with p-Phenylene Diamine Derivatives

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To expand the applicability of 4,4′-diglycidyloxybiphenyl (BP), the simplest liquid crystalline epoxy derivative, the curing reaction mechanism with p-phenylenediamine (p-PDA) derivatives under various stereoscopic conditions was investigated through kinetic analyses. Specifically, curing factors such as the starting temperature, heat, and activation energy were studied and analyzed. In particular, the effect of steric hindrance of the hardeners on the mechanism of curing reactions was explored by analyzing isothermal kinetics. It was found that the larger steric hindrance of the curing agents induced the slower curing reaction, and the contribution of the reduction in the self-catalytic curing was more pronounced than the SN2 reaction. To determine the optimized curing conditions, cured BP materials were fabricated and their glass-transition temperatures and thermal conductivities, which significantly improved over general-purpose epoxy resins owing to the characteristics of the liquid crystal, were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. May, Epoxy Resins: Chemistry And Technology, CRC Press, New York, 1988.

    Google Scholar 

  2. S. Wang, S. Q. Ma, C. X. Xu, Y. Liu, J. Y. Dai, Z. B. Wang, X. Q. Liu, J. Chen, X. B. Shen, J. J. Wei, and J. Zhu, Macromolecules, 50, 1892 (2017).

    Article  CAS  Google Scholar 

  3. Y. O. Kim, J. Cho, H. Yeo, B. W. Lee, B. J. Moon, Y. M. Ha, Y. R. Jo, and Y. C. Jung, ACS Sustain. Chem. Eng., 7, 3858 (2019).

    Article  CAS  Google Scholar 

  4. C. F. Wang, M. Zhao, J. Li, J. L. Yu, S. F. Sun, S. S. Ge, X. K. Guo, F. Xie, B. Jiang, E. K. Wujcik, Y. D. Huang, N. Wang, and Z. H. Guo, Polymer, 131, 263 (2017).

    Article  CAS  Google Scholar 

  5. J. Chen, X. Y. Huang, Y. K. Zhu, and P. K. Jiang, Adv. Funct. Mater., 27, 1604754 (2017).

    Article  Google Scholar 

  6. X. H. Cao, X. D. Wei, G. J. Li, C. Hu, K. Dai, J. Guo, G. Q. Zheng, C. T. Liu, C. Y. Shen, and Z. H. Guo, Polymer, 112, 1 (2017).

    Article  CAS  Google Scholar 

  7. J. Han, G. Du, W. Gao, and H. Bai, Adv. Funct. Mater, 29, 1900412 (2019).

    Article  Google Scholar 

  8. W. B. Shen, L. Wang, G. Chen, C. X. Li, L. Y. Zhang, Z. Yang, and H. Yang, Polymer, 167, 67 (2019).

    Article  CAS  Google Scholar 

  9. H. Yeo, A. M. Islam, N. H. You, S. Ahn, M. Goh, J. R. Hahn, and S. G. Jang, Compos. Sci. Technol., 141, 99 (2017).

    Article  CAS  Google Scholar 

  10. Y. Kim, H. Yeo, N. H. You, S. G. Jang, S. Ahn, K. U. Jeong, S. H. Lee, and M. Goh, Polym. Chem., 8, 2806 (2017).

    Article  CAS  Google Scholar 

  11. J. M. McCracken, V. P. Tondiglia, A. D. Auguste, N. P. Godman, B. R. Donovan, B. N. Bagnall, H. E. Fowler, C. M. Baxter, V. Matavulj, and J. D. Berrigan, Adv. Funct. Mater., 29, 1903761 (2019).

    Article  Google Scholar 

  12. S. Tanaka, F. Hojo, Y. Takezawa, K. Kanie, and A. Muramatsu, ACS Omega, 3, 3562 (2018).

    Article  CAS  Google Scholar 

  13. A. Belmonte, G. C. Lama, G. Gentile, X. Fernandez-Francos, S. De la Flor, P. Cerruti, and V. Ambrogi, J. Phys. Chem. C, 121, 22403 (2017).

    Article  CAS  Google Scholar 

  14. A. M. Islam, H. Lim, N. H. You, S. Ahn, M. Goh, J. R. Hahn, H. Yeo, and S. G. Jang, ACS Macro Lett., 7, 1180 (2018).

    Article  CAS  Google Scholar 

  15. W. B. Shen, L. Wang, Y. P. Cao, L. Y. Zhang, Z. Yang, X. T. Yuan, H. Yang, T. M. Jiang, and H. G. Chen, Polymer, 172, 231 (2019).

    Article  CAS  Google Scholar 

  16. R. E. Smith, F. N. Larsen, and C. L. Long, J. Appl. Polym. Sci., 29, 3713 (1984).

    Article  CAS  Google Scholar 

  17. E. Mertzel and J. L. Koenig, in Epoxy Resins and Composites II, Advances in Polymer Science, K. Dušek, Ed., Springer, Berlin, Heidelberg, 1986, Vol. 75, pp 73–112.

  18. N. Sbirrazzuoli and S. Vyazovkin, Thermochim. Acta, 388, 289 (2002).

    Article  CAS  Google Scholar 

  19. R. Hardis, J. L. Jessop, F. E. Peters, and M.R. Kessler, Compos. Part A: Appl. Sci. Manuf., 49, 100 (2013).

    Article  CAS  Google Scholar 

  20. Y. Q. Rao, A. D. Liu, and K. O’Connell, Polymer, 142, 109 (2018).

    Article  CAS  Google Scholar 

  21. Y. Z. Li, Y. Zhang, O. Rios, J. K. Keum, and M. R. Kessler, Soft Matter, 13, 5021 (2017).

    Article  Google Scholar 

  22. X. Yang, J. Zhu, D. Yang, J. Zhang, Y. Guo, X. Zhong, J. Kong, and J. Gu, Compos. Part B: Eng., 185, 107784 (2020).

    Article  CAS  Google Scholar 

  23. H. Yeo, Polymer, 159, 6 (2018).

    Article  CAS  Google Scholar 

  24. H. Yeo, Polymer, 168, 209 (2019).

    Article  CAS  Google Scholar 

  25. M. Keenan, J. Appl. Polym. Sci., 33, 1725, (1987).

  26. M. Kamal and S. Sourour, Polym. Eng. Sci., 13, 59 (1973).

    Article  CAS  Google Scholar 

  27. S. E. Gustafsson, Rev. Sci. Instrum., 62, 797 (1991).

    Article  CAS  Google Scholar 

  28. C. Riccardi, H. Adabbo, and R. Williams, J. Appl. Polym. Sci., 29, 2481 (1984).

    Article  CAS  Google Scholar 

  29. K. Horie, H. Hiura, M. Sawada, I. Mita, and H. Kambe, J. Polym. Sci. Part A-1: Polym. Chem., 8, 1357 (1970).

    Article  CAS  Google Scholar 

  30. H. Y. Cai, P. Li, G. Sui, Y. H. Yu, G. Li, X. P. Yang, and S. Ryu, Thermochim. Acta, 473, 101 (2008).

    Article  CAS  Google Scholar 

  31. D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Franklin Book Co., Butterworths, 1972.

  32. A. Meyer and K. Fischer, Environ. Sci. Eur., 27, 11 (2015).

    Article  Google Scholar 

  33. ACD/Labs, Version 11.02, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2020.

  34. D. Rosu, A. Mititelu, and C. N. Cascaval, Polym. Test., 23, 209 (2004).

    Article  CAS  Google Scholar 

  35. S. Vyazovkin and N. Sbirrazzuoli, Macromolecules, 29, 1867 (1996).

    Article  CAS  Google Scholar 

  36. V. Špaček, J. Pouchlý, and J. Biroš, Eur. Polym. J., 23, 377 (1987).

    Article  Google Scholar 

  37. C. Riccardi, H. Adabbo, and R. Williams, J. Appl. Polym. Sci., 29, 2481 (1984).

    Article  CAS  Google Scholar 

  38. R. Thomas, S. Durix, C. Sinturel, T. Omonov, S. Goossens, G. Groeninckx, P. Moldenaers, and S. Thomas, Polymer, 48, 1695 (2007).

    Article  CAS  Google Scholar 

  39. J. M. Zhou and J. P. Lucas, Polymer, 40, 5513 (1999).

    Article  CAS  Google Scholar 

  40. H. Oh, Y. Kim, and J. Kim, Polymer, 183, 121834 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Kyungpook National University Research Fund, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonuk Yeo.

Additional information

Supporting information

Information is available regarding structure analysis by FT-IR spectroscopy during curing reaction, Arrhenius behaviors of (da/dt)p and tp, and DSC curves of cured materials. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The image from this article is used as the cover image of the Volume 28, Issue 10.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olamilekan, A.I., Yeo, H. Curing Behavior of 4,4′-Diglycidyloxybiphenyl with p-Phenylene Diamine Derivatives. Macromol. Res. 28, 960–967 (2020). https://doi.org/10.1007/s13233-020-8127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8127-8

Keywords

Navigation