Skip to main content
Log in

Structural and thermal properties of spray-dried methotrexate-loaded biodegradable microparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Drug–polymer interactions, structural properties, thermal behavior, and stability of biodegradable microparticles are fundamental aspects in the developing of new polymeric drug delivery systems. In this study, poly (d,l-lactide-co-glycolide) (PLGA) microparticles containing methotrexate (MTX) were successfully obtained by spray drying. Scanning electronic microscopy, differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), and drug-loading efficiency were used to investigate the effect of drug–polymer ratio and its interactions, in a new MTX-loaded PLGA spray-dried microparticles. High levels of encapsulation efficiency (about 90 %) and a prevalent spherical shape were identified for different drug–polymer ratios used (9, 18, and 27 % m/m). The thermal analyses (DSC and TG) and XRD indicate that MTX is homogeneously distributed in the polymeric matrix, with a prevalent amorphous state in a stable molecular dispersion. Therefore, a correlation between drug content and the structural-thermal properties of drug-loaded PLGA microparticles was established using the thermal analysis data. The biodegradable microparticle leads to an increment of thermal stability of MTX, confirming that spray drying is an efficient process for obtaining MTX-loaded PLGA microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai C, Chen X, Gong H. Interaction of anticancer drug methotrexate with nucleic acids analyzed by multi-spectroscopic method. Spectrochim Acta A. 2009;72:46–9.

    Article  Google Scholar 

  2. Zhang Y, Zhuo R. Synthesis and drug release behavior of poly(trimethylene carbonate)–poly(ethylene glycol)–poly(trimethylene carbonate) nanoparticles. Biomaterials. 2005;26:2089–94.

    Article  CAS  Google Scholar 

  3. Jeong Y, Seo D, Kim D, Choi C, Jang M, Nah J. Methotrexate-incorporated polymeric micelles composed of methoxy poly(ethylene glycol)-grafted chitosan. Macromol Res. 2009;17:538–43.

    Article  CAS  Google Scholar 

  4. Hatanakaa K, Nakamurab N, Kojimac M, Ando K, Irie S, Bunno M, Nakaminef H, Uekusa T. Methotrexate-associated lymphoproliferative disorders mimicking angioimmunoblastic T-cell lymphoma. Pathol Res Pract. 2010;206:9–13.

    Article  Google Scholar 

  5. Ayyappan S, Sundaraganesan N, Aroulmoji V, Murano E, Sebastian S. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug methotrexate. Spectrochim Acta A. 2010;77:264–75.

    Article  CAS  Google Scholar 

  6. Mouterde G, Baillet A, Gaujoux-Viala C, Cantagrel A, Wendling D, Loet XL, Schaeverbeke T. Optimizing methotrexate therapy in rheumatoid arthritis: a systematic literature review. Joint Bone Spine. 2011;78:587–92.

    Article  CAS  Google Scholar 

  7. Warren RB, Hons MBCB, Griffiths CEM. Systemic therapies for psoriasis: methotrexate, retinoids, and cyclosporine. Clin Dermatol. 2008;26:438–47.

    Article  Google Scholar 

  8. Javadzadeh Y, Hamishehkar H. Enhancing percutaneous delivery of methotrexate using different types of surfactants. Colloids Surf B. 2011;82:422–6.

    Article  CAS  Google Scholar 

  9. Taheri A, Atyabi F, Nouri SF, Ahadi F, Derakhshan MA, Amini M, Ghahremani MH. Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomater. 2011. doi:10.1155/2011/768201.

  10. Ofner CM III, Pica K, Bowman BJ, Chen CS. Growth inhibition, drug load, and degradation studies of gelatin/methotrexate conjugates. Int J Pharm. 2006;308:90–9.

    Article  CAS  Google Scholar 

  11. Sin F, Sui C, Teng L, Liu X, Teng L, Meng Q, Li Y. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres. Int J Pharm. 2010;397:44–9.

    Article  Google Scholar 

  12. Dai C, Wang B, Zhao H. Microencapsulation peptide and protein drugs delivery system. Colloids Surf B. 2005;41:117–20.

    Article  CAS  Google Scholar 

  13. Saboktakina MR, Tabatabaie RM, Maharramov A, Ramazanov MA. Synthesis and in vitro studies of biodegradable thiolated chitosan hydrogels for breast cancer therapy. Int J Biol Macromol. 2011;48:747–52.

    Article  Google Scholar 

  14. Javadzadeh Y, Ahadia F, Davarana S, Mohammadia G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf B. 2010;81:498–502.

    Article  CAS  Google Scholar 

  15. Cun D, Jensen DK, Maltesen MJ, Bunker M, Whiteside P, Scurr D, Foged C, Nielsen HM. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm. 2011;77:26–35.

    Article  CAS  Google Scholar 

  16. Saliba JB, Faraco AAG, Yoshida MI, Vasconcelos WL, Silva-Cunha A, Mansur HS. Development and characterization of an intraocular biodegradable polymer system containing cyclosporine-A for the treatment of posterior uveitis. Mater Res. 2008;11:207–11.

    Article  CAS  Google Scholar 

  17. Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf B. 2011;86:206–11.

    Article  CAS  Google Scholar 

  18. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–90.

    Article  CAS  Google Scholar 

  19. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.

    Article  CAS  Google Scholar 

  20. Klose D, Delplace C, Siepmann J. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles. Int J Pharm. 2011;404:75–82.

    Article  CAS  Google Scholar 

  21. Raffin RP, Jornada DS, Ré MI, Pohlmann AR, Guterres SS. Sodium patoprazole-loaded enteric microparticles prepared by spray drying: effect of the scale of production and process validation. Int J Pharm. 2006;324:10–8.

    Article  CAS  Google Scholar 

  22. Billona A, Bataillea B, Gassanasb G, Jacob M. Development of spray-dried acetaminophen microparticles using experimental designs. Int J Pharm. 2000;203:159–68.

    Article  Google Scholar 

  23. Rattes ALR, Oliveira WP. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007;171:7–14.

    Article  CAS  Google Scholar 

  24. Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF. Nanoparticles by spray drying using innovative new technology: the Buchi nano spray dryer b-90. J Controlled Release. 2010;147:304–10.

    Article  CAS  Google Scholar 

  25. Masters K. Spray drying handbook. 5th ed. New York: Longman Scientific & Technical; 1972.

    Google Scholar 

  26. Fua N, Zhou Z, Jones TB, Tan TTY, Wu WD, Lin SX, Chen XD, Chana PPY. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention. Int J Pharm. 2011;413:155–66.

    Article  Google Scholar 

  27. Lee SH, Heng D, Ng WK, Chan H, Tan RBH. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403:192–200.

    Article  CAS  Google Scholar 

  28. Liu W, Wu WD, Selomulya C, Chen XD. Uniform chitosan microparticles prepared by a novel spray-drying technique. Int J Chem Eng. 2011. doi:10.1155/2011/267218.

  29. Khvedelidze M, Mdzinarashvili T, Partskhaladze T, Nafee N, Schaefer UF, Lehr C, Schneider M. Calorimetric and spectrophotometric investigation of PLGA nanoparticles and their complex with DNA. J Therm Anal Calorim. 2010;99:337–48.

    Article  CAS  Google Scholar 

  30. Fulias A, Vlase T, Vlase G, Doca N. Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim. 2010;99:193–992.

    Article  Google Scholar 

  31. Bruni G, Berdenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102:193–201.

    Article  CAS  Google Scholar 

  32. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.

    Article  CAS  Google Scholar 

  33. He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.

    Article  CAS  Google Scholar 

  34. Huh Y, Cho H, Yoon I, Choia M, Kim JS, Oh E, Chung S, Shim C, Kim D. Preparation and evaluation of spray-dried hyaluronic acid microspheres for intranasal delivery of fexofenadine hydrochloride. Eur J Pharm Sci. 2010;40:9–15.

    Article  CAS  Google Scholar 

  35. Chan HK, Gonda I. Methotrexate: existence of different types of solid. Int J Pharm. 1991;68:179–90.

    Article  CAS  Google Scholar 

  36. Chadha R, Arora P, Kaur R, Saini A, Singla ML, Jain DS. Characterization of solvatomorphs of methotrexate using thermoanalytical and other techniques. Acta Pharm. 2009;59:245–7.

    Article  CAS  Google Scholar 

  37. Giron D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim Acta. 1995;248:1–59.

    Article  CAS  Google Scholar 

  38. Sánchez EG, Jung HC, Yépez LM, Hermandez-Abad V. Relevancia del Polimorfismo em el área farmacêutica. Rev Mex Cienc Farm. 2007;38:57–76.

    Google Scholar 

  39. Oliveira OW, Petrovick PR. Secagem por aspersão (spray drying) de extratos vegetais: bases e aplicações. Rev Bras Farmacogn. 2010;20:641–50.

    Article  Google Scholar 

  40. Cao XQ, Vassen R, Schwartz S, Jungen W, Tietz F, Stoever D. Spray-drying of ceramics for plasma-spray coating. J Eur Ceram Soc. 2000;20:2433–9.

    Article  CAS  Google Scholar 

  41. Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng. 2008;88:411–8.

    Article  Google Scholar 

  42. Wang A, Lu Y, Zhu R, Li S, Ma X. Effect of process parameters on the performance of spray dried hydroxyapatite microspheres. Powder Technol. 2009;191:1–6.

    Article  CAS  Google Scholar 

  43. Schuck P, Dolivet A, Méjean S, Zhu P, Blanchard E, Jeantet R. Drying by desorption: a tool to determine spray drying parameters. J Food Process Eng. 2009;94:199–204.

    Article  Google Scholar 

  44. Cal K, Sollohub K. Spray drying technique I: hardware and process parameters. J Pharm Sci. 2010;99:575–86.

    CAS  Google Scholar 

  45. Silva-Júnior AA, Matos JR, Formariz TP, Rossanezi G, Scarpa MV, Egito EST, Oliveira AG. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. Int J Pharm. 2009;368:45–55.

    Article  Google Scholar 

  46. Silva-Júnior AA, Scarpa MV, Pestana KC, Mercuri LP, Matos JR, Oliveira AG. Thermal analysis of biodegradable microparticles containing ciprofloxacin hydrochloride obtained by spray drying technique. Thermochim Acta. 2008;467:91–8.

    Article  Google Scholar 

  47. Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettoneb MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57:207–12.

    Article  CAS  Google Scholar 

  48. Beck-Broichsitter M, Schweiger C, Schmehl T, Gessler T, Seeger W, Kissel T. Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. J Controlled Release. 2012;158:329–35.

    Article  CAS  Google Scholar 

  49. Mladenovska K, Cruaud O, Richomme P, Belamie E, Raicki RS, Venier-Julienne MC, Popovski E, Benoit JP, Goracinova K. 5-ASA loaded chitosan-Ca-alginate microparticles: preparation and physicochemical characterization. Int J Pharm. 2007;345:59–69.

    Article  CAS  Google Scholar 

  50. Almeida EDP, Costa AA, Serafini MR, Rossetti FC, Marchetti JM, Sarmento VHV, Nunes RS, Valerio MEG, Araújo AAS, Lira AAM. Preparation and characterization of chloroaluminum phthalocyanine-loaded solid lipid nanoparticles by thermal analysis and powder X-ray diffraction techniques. J Therm Anal Calorim. 2012;108:191–6.

    Article  CAS  Google Scholar 

  51. Chandak AR, Verma PRP. Design and development of hydroxypropyl methycellulose (HPMC) based polymeric films of methotrexate: physicochemical and pharmacokinetic evaluations. Yakugaku Zasshi. 2008;128:1057–66.

    Article  CAS  Google Scholar 

  52. Gamisans F, Lacoulonche F, Chauvet A, Espina M, Garcia ML, Ege MA. Flurbiprofen-loaded nanospheres: analysis of the matrix structure by thermal methods. Int J Pharm. 1999;179:37–48.

    Article  CAS  Google Scholar 

  53. Mainardes RM, Gremião MPD, Evagelista RC. Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Braz J Pharm Sci. 2006;42:523–30.

    CAS  Google Scholar 

  54. Allison SD. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic) acid microparticle drug delivery systems. J Pharm Sci. 2008;97:2022–35.

    Article  CAS  Google Scholar 

  55. Erbetta CDC, Viegas CCB, Freitas RFS, Sousa RG. Síntese e caracterização térmica e química do copolímero Poli(d,l-lactídeo-co-glicolídeo). Polímeros. 2011;21:376–87.

    Article  CAS  Google Scholar 

  56. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–97.

    Article  CAS  Google Scholar 

  57. Rouse JJ, Mohamed F, Walle CF. Physical ageing and thermal analysis of PLGA microspheres encapsulating protein or DNA. Int J Pharm. 2007;339:112–20.

    Article  CAS  Google Scholar 

  58. Park PP, Jonnalagadda S. Predictors of glass transition in the biodegradable poly-lactide and poly-lactide-co-glycolide polymers. J Appl Polym Sci. 2006;100:1983–7.

    Article  CAS  Google Scholar 

  59. Giron D. Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques. J Therm Anal Calorim. 2001;64:37–60.

    Article  CAS  Google Scholar 

  60. Bruni C, Milanese C, Berbenni V, Sartor F, Villa M, Marini A. Crystalline and amorphous phases of a new drug. J Therm Anal Calorim. 2010;102:297–303.

    Article  CAS  Google Scholar 

  61. Herman C, Leyssens T, Vermylen V, Halloin V, Haut B. A new approach for the estimation of the melting enthalpy of metastable crystalline compounds using differential scanning calorimetry—application to the two crystallographic forms of Etiracetam. J Therm Anal Calorim. 2012;107:777–88.

    Article  CAS  Google Scholar 

  62. Plano D, Lizarraga E, Palop JA, Sanmartin C. Study of polymorphism of organosulfur and organoselenium compounds. J Therm Anal Calorim. 2011;105:1007–13.

    Article  CAS  Google Scholar 

  63. Jingou J, Shilei H, Weigi L, Danjun W, Tengfei W, Yi X. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf B. 2011;83:103–7.

    Article  Google Scholar 

  64. Chen M, Liu Y, Yang W, Li X, Liu L, Zhou Z, Wang Y, Li R, Zhang Q. Preparation and characterization of self-assembled nanoparticles of 6-O-cholesterol-modified chitosan for drug delivery. Carbohydr Polym. 2011;84:1244–51.

    Article  CAS  Google Scholar 

  65. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.

    Article  CAS  Google Scholar 

  66. Bikiaris D, Papageorgiou GZ, Stergiou A, Pavlidou E, Karavas E, Kanaze F, Georgarakis M. Physicochemical studies on solid dispersions of poorly water-soluble drugs evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005;439:58–67.

    Article  CAS  Google Scholar 

  67. Kim E, Chun M, Jang J, Lee I, Lee K, Choi H. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm. 2006;64:200–5.

    Article  CAS  Google Scholar 

  68. Modi A, Tayad P. Enhancement of dissolution profile by solid dispersion. Pharm Sci Technol. 2006;7:1–6.

    Article  Google Scholar 

  69. Mirza S, Heinamaki J, Miroshnyk I, Rantanen J, Christiansen L, Karjalainen M, Yliruusi J. Understanding processing-induced phase transformations in erythromycin–PEG 600 solid dispersions. J Pharm Sci. 2006;95:1723–32.

    Article  CAS  Google Scholar 

  70. Kanazel FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J Therm Anal Calorim. 2006;83:283–90.

    Article  Google Scholar 

  71. Huang J, Li Y, Wigent RJ, Malick WA, Sandhu HK, Singhal D, Shah NH. Interplay of formulation and process methodology on the extent of nifedipine molecular dispersion in polymers. Int J Pharm. 2011;420:59–67.

    Article  CAS  Google Scholar 

  72. Azevedo JR, Sizilio RH, Brito MB, Costa AMB, Serafini MR, Araujo AAS, Santos MRV, Lira AAM, Nunes RS. Physical and chemical characterization insulin-loaded chitosan–TPP nanoparticles. J Therm Anal Calorim. 2011;106:685–9.

    Article  CAS  Google Scholar 

  73. Mothé CG, Azevedo AD, Drumond WS, Wang SH, Sinisterra RD. Preparation and characterization of poly(l,l-lactide)-b-poly(ethylene glycol)-b-poly(l,l-lactide) (PLLA-PEG-PLLA) microspheres having encapsulated tetracycline. J Therm Anal Calorim. 2011;106:671–7.

    Article  Google Scholar 

  74. Schawe JEK. About the changes of heat capacity, glass transition temperature and relaxation time during the polymerization reaction of thermosetting systems. Thermochim Acta. 2002;391:279–95.

    Article  CAS  Google Scholar 

  75. Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol. 2011;22:1–19.

    Article  CAS  Google Scholar 

  76. Gradon L, Janeczko S, Abdullah M, Iskandar F, Okuyama K. Selforganization kinetics of mesoporous nanostructured particles. AIChE J. 2004;50:2583–93.

    Article  CAS  Google Scholar 

  77. Nandiyanto ABD, Hagura N, Iskandar F, Okuyama K. Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Mater. 2010;58:282–9.

    Article  CAS  Google Scholar 

  78. Iskandar F, Chang HW, Okuyama K. Preparation of microencapsulated powders by an aerosol spray method and their optical properties. Adv Powder Technol. 2003;14:349–67.

    Article  CAS  Google Scholar 

  79. Gharsallaoui A, Roudaut GI, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40:1107–21.

    Article  CAS  Google Scholar 

  80. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Council for Scientific and Technological Development (CNPq) (grant number: 479195/2008; 483073/2010-5), the Coordination for the Improvement of Higher Level Education Personnel (CAPES) (scholarship of Alice R. Oliveira), and the Federal University of Rio Grande do Norte (UFRN) (Scholarship of Philippe C. Mesquita) for their financial support. The authors also acknowledge the help extended by Andrew Alastair Cumming in proofreading the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnóbio Antônio da Silva-Júnior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, A.R., Molina, E.F., de Castro Mesquita, P. et al. Structural and thermal properties of spray-dried methotrexate-loaded biodegradable microparticles. J Therm Anal Calorim 112, 555–565 (2013). https://doi.org/10.1007/s10973-012-2580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2580-3

Keywords

Navigation