Skip to main content
Log in

Thermal behaviour of cephalexin in different mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermoanalytical curves (TA), i.e. TG, DTG and DTA for pure cephalexin and its mixtures with talc, magnesium stearate, starch and microcrystalline cellulose, respectively, were drawn up in air and nitrogen at a heating rate of 10 °C min−1. The thermal degradation was discussed on the basis of EGA data obtained for a heating rate of 20 °C min−1. Until 250 °C, the TA curves are similar for all mixtures, up this some peculiarities depending on the additive appears. These certify that between the pure cephalosporin and the excipients do not exists any interaction until 250 °C. A kinetic analysis was performed using the TG/DTG data in air for the first step of cephalexin decomposition at four heating rates: 5, 7, 10 and 12 °C min−1. The data processing strategy was based on a differential method (Friedman), an integral method (Flynn–Wall–Ozawa) and a nonparametric kinetic method (NPK). This last one allowed an intrinsic separation of the temperature, respective conversion dependence on the reaction rate and less speculative discussions on the kinetic model. All there methods had furnished very near values of the activation energy, this being an argument for a single thermooxidative degradation at the beginning (192–200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharm. 2002;438:137–42.

    Article  CAS  Google Scholar 

  2. Khamdang S, Takeda M, Babu E, Noshiro R, Onozato ML, Tojo A, et al. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur J Pharm. 2003;465:1–7.

    Article  CAS  Google Scholar 

  3. Gringauz A. Introduction to medicinal chemistry. New York: Wiley-VCH, Inc.; 1997.

    Google Scholar 

  4. Schwaber MJ, Graham CS, Sands BE, Gold HS, Carmelia Y. Treatment with a broad-spectrum cephalosporin versus piperacillin-tazobactam and the risk for isolation of broad-spectrum cephalosporin-resistant Enterobacter species. Antimicrob Agents Chemother. 2003;47:1882–6.

    Article  CAS  Google Scholar 

  5. Swarbrick J. Encyclopedia of pharmaceutical technology. 3rd ed. UK: Informa HealthCare; 2007.

    Google Scholar 

  6. Haines PJ. Thermal methods of analysis-principles. Applications and problems. London: Blackie Academic and Professional; 1995.

    Google Scholar 

  7. Charsley EL, Warrington SB. Thermal analysis—techniques and applications. Cambridge: Royal Society of Chemistry; 1992.

    Google Scholar 

  8. Macedo RO, Nascimento TG. Quality control of thiabendazole pre-formulation and tablets by TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392:85–92.

    Article  Google Scholar 

  9. Joshi BV, Patil VB, Pokharkar VB. Compatibility studies between carbamazepine and tablet excipients using thermal and non-thermal methods. Drug Dev Ind Pharm. 2002;28:687–94.

    Article  CAS  Google Scholar 

  10. Sanchez-Lafuente C, Rabasco AM, Alvarez-Fuentes J, Fernandez M. Eudragit® RS-PM and Ethocel® 100 Premium: influence over the behavior of didanosine inert matrix system. Il Farmaco. 2002;57:649–56.

    Article  CAS  Google Scholar 

  11. Huang Y, Cheng Y, Alexander K, Dollimore D. The thermal analysis study of the drug captopril. Thermochim Acta. 2001;367:43–58.

    Article  Google Scholar 

  12. Araújo AAS, Storpirtis S, Mercuri L, Carvalho FMS, Santos-Filho M, Matos JR. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm. 2003;260:303–14.

    Article  Google Scholar 

  13. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:635–8.

    Article  CAS  Google Scholar 

  14. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  17. Vlase T, Vlase G, Doca N, Bolcu C. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  18. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72:597–604.

    Article  CAS  Google Scholar 

  19. Vlase T, Vlase G, Doca N. Thermal stability of food additives of glutamate and benzoate type. J Therm Anal Calorim. 2005;80:425–8.

    Article  CAS  Google Scholar 

  20. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  21. Serra R, Nomen R, Sempere J. The non-parametric kinetics a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  22. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermo-analytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  23. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56:843–9.

    Article  CAS  Google Scholar 

  24. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Norwel: Kluwer; 2003. p. 91–109.

    Chapter  Google Scholar 

  25. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported from Romanian Ministry of Education, Research and Innovation between Grant 574/2009, PN II, ID_2376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Vlase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuliaş, A., Vlase, T., Vlase, G. et al. Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim 99, 987–992 (2010). https://doi.org/10.1007/s10973-010-0708-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0708-x

Keywords

Navigation