Skip to main content
Log in

Studies of physico-chemical properties and fractal dimensions of MgB2 superconductor surface

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The porous structure of MgB2 has been investigated using atomic force microscopy (AFM) and sorption techniques. The fractal dimension and surface roughness parameters were evaluated from (AFM) and nitrogen adsorption–desorption isotherms measured at −196 °C for MgB2 sample. Adsorption capacity, specific surface area, and fractal dimensions were determined from adsorption–desorption isotherms. The sorption isotherms of MgB2 samples were S-shaped and belong to type II according to the IUPAC classification. The results of fractal dimensions of MgB2 surface determined on the basis sorptometry and AFM data are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature. 2001;410:63–4.

    Article  CAS  Google Scholar 

  2. Rajput S, Chaudhary S. On the superconductivity and Mg outdiffusion in vacuum-synthesized MgB2 samples. IEEE Trans Appl Supercond. 2010;20:2390–6.

    Article  CAS  Google Scholar 

  3. Zhang YB, Zheng M, Gao ZS, Liu J, Zhu HM, Zhou SP. Synthesis and characterization of MgB2-MgO composite superconductor. J Supercond Nov Magn. 2009;22:729–32.

    Article  CAS  Google Scholar 

  4. Nakane T, Kumakura H. Evaluation of effect of area factors on the grain connectivity of ex-situ MgB2 cores. IEEE Trans Appl Supercond. 2009;19:2793–6.

    Article  CAS  Google Scholar 

  5. Braccini V, Wardelli D, Penco R, Grasso G. Development of ex situ processed MgB2 wires and their applications to magnets. Physica C. 2007;456:209–17.

    Article  CAS  Google Scholar 

  6. Abrahamsen AB, Grivel JC, Andersen NH, Homeyer J, Saksl K. Kinetics of MgB2 formation studied in situ synchrotron X-ray powder diffraction. IEEE Trans Appl Supercond. 2007;17:2757–60.

    Article  CAS  Google Scholar 

  7. Nakane T, Fujii H, Masumoto A, Kitaguchi H, Kumakara H. The improvement of in situ powder in tube MgB2 tapes by mixing MgB2 to the starting powder MgH2 and B. Physica C. 2005;426:1238–43.

    Article  Google Scholar 

  8. Bohnestiehl S, Dregia SA, Sumpton MD, Collings EW. Thermal analysis of MgB2 formation. IEEE Trans Appl Supercond. 2007;17:2754–6.

    Article  Google Scholar 

  9. Kuwashima H, Murase S, Nanato N, Kim SB, Yamada Y, Nitta A, Tachikawa K. Jc anisotropy and pinning behaviours of the in situ MgB2 wires with/without SiC addition. IEEE Trans Appl Supercond. 2008;18:1212–5.

    Article  CAS  Google Scholar 

  10. Haesler W, Rodig C, Fischer C, Holzapfel B, Perner O, Eckert J, Nenkov K, Fuchs G. Low temperature preparation of MgB2 tapes using mechanically alloyed powder. Supercond Sci Technol. 2003;16:281–4.

    Article  Google Scholar 

  11. Fischer C, Hassler W, Rodig C, Perner O, Behr G, Schubert M, Nenkov K, Eckert J, Holzapfel B, Schultz L. Critical current densities of superconducting MgB2 tapes prepared on the base of mechanically alloyed precursors. Physica C. 2004;406:121–30.

    Article  CAS  Google Scholar 

  12. Saglietti L, Perini E, Ripamonti G, Bassani E, Carcano G, Giunchi G. Boron purity effects on structural properties of MgB2 obtained by Mg-reactive liquid infiltration. IEEE Trans Appl Supercond. 2009;19:2739–43.

    Article  CAS  Google Scholar 

  13. Agostino A, Bonometti E, Volpe P, Trucatto M, Manfredoti C, Olivero P, Paolini C, Rinaudo G, Gozzelino L. Carbon influence in the synthesis of MgB2 by a microwave methods. Int J Mod Phys B. 2003;17:773–8.

    Article  CAS  Google Scholar 

  14. Paranthaman M, Thompson JR, Christen DK. Effect of carbon-doping in bulk superconducting MgB2 samples. Physica C. 2001;355:1–5.

    Article  CAS  Google Scholar 

  15. Ribeiro RA, Budko SL, Petrovic C, Canfield PC. Carbon doping of superconducting magnesium diboride. Physica C. 2003;384:227–36.

    Article  CAS  Google Scholar 

  16. Lee S, Masui T, Yamamoto A, Uchiyama H, Tajima S. Carbon-substituted MgB2 single crystals. Physica C. 2003;397:7–13.

    Article  CAS  Google Scholar 

  17. Kazakov SM, Puzniak R, Rogacki K, Mironov AV, Zhigadlo ND, Jun S, Soltman Ch, Batlogg B, Karpinski J. Carbon substitution in MgB2 single crystals: structural and superconducting properties. Phys Rev B. 2005;71:024533–024543.

  18. Yuan GQ, Xu XN, Wang ZH, Lu DW, Jin X. Comparison of physical properties for carbon nanotube doped MgB2 superconductors synthesized with different process. Physica C. 2005;432:257–62.

    Article  CAS  Google Scholar 

  19. Wilke RHI, Budko SL, Canfield PC, Finnemore DK, Hannaks ST. Synthesis of Mg(B1-x C x )2 powders. Physica C. 2005;432:193–205.

    Article  CAS  Google Scholar 

  20. Wang JL, Zeng R, Kim JH, Lu L, Dou SX. Effects of C substitution on the pinning mechanism of MgB2. Phys Rev B. 2008;77:174501–7.

    Article  Google Scholar 

  21. Feng Y, Zhao Y, Sun YP, Liu FC, Fu BQ, Zhou L, Chen CH, Koshizuka N, Murakami M. Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure. Appl Phys Lett. 2001;79:3983–5.

    Article  CAS  Google Scholar 

  22. Xu XL, Guo JD, Wang YZ, Wang X. Au doping effects in the Mg1-x Au x B2 series. Mater Lett. 2003;58:142–5.

    Article  Google Scholar 

  23. Slusky JS, Rogado N, Regan KA, Hayward MA, et al. Loss of superconductivity with the addition of Al to MgB2 and structural transition in Mg1-x Al x B2. Nature. 2001;410:343–5.

    Article  CAS  Google Scholar 

  24. Gu D, Cai W, Yan YM, Cui JK, Wu YG, Yuan T, Shen GQ, Jin LJ. Effect of Pb substitution in bulk superconducting MgB2. Physica C. 2003;386:643–7.

    Article  CAS  Google Scholar 

  25. Shekhar C, Giri R, Tiwari RS, Rana DS, Malik SK, Srivastava ON. Effect of La doping on microstructure and critical current density of MgB2. Supercond Sci Technol. 2005;18:1210–4.

    Article  CAS  Google Scholar 

  26. Zhang Y, Lu Ch, Zhou SH, Chung K, Li WX. Optimization of nominal mixing ratio of Mg to B in fabrication of magnesium diboride bulk. IEEE Trans Appl Supercond. 2009;19:2775–9.

    Article  CAS  Google Scholar 

  27. Williamsen GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31.

    Article  Google Scholar 

  28. Avdeev M, Jorgensen JD, Ribeiro RA, Budko SL, Canfield PC. Crystal chemistry of carbon-substituted MgB2. Physica C. 2003;387:301–6.

    Article  CAS  Google Scholar 

  29. Perner O, Haer W, Eckert J, Fischer C, Mickel C, Fuchs G, Holzapfel B, Schultz L. Effects of oxide addition on superconductivity in nanocrystalline MgB2 bulk samples. Physica C. 2005;432:15–24.

    Article  CAS  Google Scholar 

  30. Serquis A, Zhu YT, Peterson EJ, Coulter JY, Peterson DE, Mueller FM. Effect of lattice strain and defects on the superconductivity of MgB2. Appl Phys Lett. 2001;79:4399–401.

    Article  CAS  Google Scholar 

  31. Kim JH, Don SX, Shi DQ, Rindfleisch M, Tomsic M. Study of MgO formation and structural defects in in situ processed MgB2/Fe wires. Supercond Sci Technol. 2007;20:1026–31.

    Article  CAS  Google Scholar 

  32. Kario A, Hassler W, Herrmann M, Rodig C, Scheiter J, Holzapfel B, Schultz L, Slachter S, Ringsdorf B, Goldacker W, Morawski A. Properties of MgB2 tapes prepared by using MA in ex-situ powder. IEEE Trans Appl Supercond. 2010;20:1521–3.

    Article  CAS  Google Scholar 

  33. Hanafusa K, Yamamoto A, Ogino H, Hori S, Shimoyama J, Kishio K. Interpretation of X-ray line profile of polycrystalline MgB2. IEEE Trans Appl Supercond. 2009;19:2690–3.

    Article  CAS  Google Scholar 

  34. Gallitto AA, Bonsignore G, Giunchi G, Vigni ML. Effects of weak links in the nonlinear microwave response of MgB2 superconductor. J Supercond Nov Magn. 2007;20:13–20.

    Article  CAS  Google Scholar 

  35. Tajima T, Canabal A, Zhao Y, Romanenko A, Moeckly BH, Nantista ChD, Tantawi S, Phillips L, Iwashita Y, Campisi IE. MgB2 for application to RF cavities for accelerators. IEEE Trans Appl Supercond. 2007;17:1330–3.

    Article  CAS  Google Scholar 

  36. Staszczuk P, Sternik D, Chądzyński GW, Kutarov VV. Characterization of physicochemical properties of high-temperature superconductor surfaces using nitrogen adsorption. J Alloys Comp. 2004;367:277–82.

    Article  CAS  Google Scholar 

  37. Staszczuk P, Sternik D, Chądzyński GW, Robens E, Błachnio M. Studies of heterogeneity properties of selected high-temperature superconductor surfaces. J Therm Anal Calorim. 2006;86:133–6.

    Article  CAS  Google Scholar 

  38. Chądzyński GW, Staszczuk P, Sternik D, Błachnio M. Studies physico-chemical properties and fractal dimensions of selected high-temperature superconductor surfaces. J Therm Anal Calorim. 2008;94:623–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Chądzyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chądzyński, G.W., Staszczuk, P., Sternik, D. et al. Studies of physico-chemical properties and fractal dimensions of MgB2 superconductor surface. J Therm Anal Calorim 108, 985–989 (2012). https://doi.org/10.1007/s10973-011-1981-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1981-z

Keywords

Navigation