Skip to main content
Log in

Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Tricobalt tetroxide (Co3O4) nanoparticles were synthesized by co-precipitation method. The structure, morphology, purity, real compositions, and functional groups of the prepared nanoparticles were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared (FTIR) spectroscopy, respectively. The results confirm the formation of pure spinel structure of the Co3O4 nanoparticles with space group Fd3m and average spherical particle size of 58 nm. The optical properties were explored by ultraviolet–visible spectroscopy (UV–vis) and photoluminescence spectroscopy (PL). Two absorption peaks were aroused in ultraviolet and visible ranges accompanied by two band gap energies and an Urbach energy. Moreover, two emission peaks in agreement with the calculated band gap energies were observed in the PL spectrum. A weak ferromagnetic behavior was investigated by magnetic hysteresis (M-H) loop at room temperature. The electrical conductivity was measured in the temperature range 313–573 K. A normal semiconductor behavior was detected. The dielectric properties were studied under the variation of temperature and frequency. Then, the dielectric constant, dielectric loss, ac conductivity, relaxation process, and Nyquist plots were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thota, S., Kumar, A., Kumar, J.: Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol–gel derived oxalates. Mater. Sci. Eng. B. 164, 30–37 (2009). https://doi.org/10.1016/j.mseb.2009.06.002

    Article  Google Scholar 

  2. Seidov, Z., Açıkgöz, M., Kazan, S., Mikailzade, F.: Magnetic properties of Co3O4 polycrystal powder. Ceram. Int. 42, 12928–12931 (2016). https://doi.org/10.1016/j.ceramint.2016.05.063

    Article  Google Scholar 

  3. Ibrahim, E.M.M., Abu-Dief, A.M., Elshafaie, A., Ahmed, A.M.: Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.054

    Article  Google Scholar 

  4. Gunnewiek, R.F.K., Mendes, C.F., Kiminami, R.H.G.A.: Synthesis of spinel cobalt oxide nanoparticles using a modified polymeric precursor method. Adv. Powder Technol. 27, 1056–1061 (2016). https://doi.org/10.1016/j.apt.2016.03.013

    Article  Google Scholar 

  5. Packiaraj, R., Devendran, P., Venkatesh, K.S., Asath bahadur, S., Manikandan, A., Nallamuthu, N.: Electrochemical investigations of magnetic Co3O4 nanoparticles as an active electrode for supercapacitor applications. J. Supercond. Nov. Magn. 32, 2427 (2018). https://doi.org/10.1007/s10948-018-4963-6

    Article  Google Scholar 

  6. Liu, B., Zhang, X., Shioyama, H., Mukai, T., Sakai, T., Xu, Q.: Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Power Sources. 195, 857–861 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.058

    Article  ADS  Google Scholar 

  7. Pal, J., Chauhan, P.: Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Charact. 61, 575–579 (2010). https://doi.org/10.1016/j.matchar.2010.02.017

    Article  Google Scholar 

  8. Ravi Dhas, C., Venkatesh, R., Jothivenkatachalam, K., Nithya, A., Suji Benjamin, B., Moses Ezhil Raj, A., Jeyadheepan, K., Sanjeeviraja, C.: Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram. Int. 41, 9301–9313 (2015). https://doi.org/10.1016/j.ceramint.2015.03.238

    Article  Google Scholar 

  9. Tharayil, N.J., Raveendran, R., Vaidyan, A.V., Chithra, P.G.: Optical, electrical and structural studies of nickel-cobalt oxide nanoparticles. IJEMS. 156(Dec. 2008), (2008)

  10. Lu, J., Moon, K.-S., Xu, J., Wong, C.P.: Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16, 1543–1548 (2006). https://doi.org/10.1039/B514182F

    Article  Google Scholar 

  11. Huang, X., Jiang, P.: Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546–554 (2015). https://doi.org/10.1002/adma.201401310

    Article  Google Scholar 

  12. Koseoglu, Y., Kurtulus, F., Kockar, H., Guler, H., Karaagac, O., Kazan, S., Aktas, B.: Magnetic characterizations of cobalt oxide nanoparticles. J. Supercond. Nov. Magn. 25, 2783–2787 (2012). https://doi.org/10.1007/s10948-011-1265-7

    Article  Google Scholar 

  13. Shafiu, S., Baykal, A., Sözeri, H., Toprak, M.S.: Triethanolamine assisted hydrothermal synthesis of superparamagnetic Co3O4 nanoparticles and their characterizations. J. Supercond. Nov. Magn. 27, 2117–2122 (2014). https://doi.org/10.1007/s10948-014-2562-8

    Article  Google Scholar 

  14. de Alba, J.R., Martínez, J.R., Guerrero, A.L., Ortega-Zarzosa, G.: Effect of the silica cover on the properties of Co3O4 nanoparticles. J. Supercond. Nov. Magn. 29, 2651–2658 (2016). https://doi.org/10.1007/s10948-016-3595-y

    Article  Google Scholar 

  15. Wadekar, K.F., Nemade, K.R., Waghuley, S.A.: Chemical Synthesis of Cobalt Oxide (Co3O4) Nanoparticles Using Co-Precipitation Method, vol. 7, p. 3 (2017)

    Google Scholar 

  16. Makhlouf, S.A., Bakr, Z.H., Aly, K.I., Moustafa, M.S.: Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattice. Microst. 64, 107–117 (2013). https://doi.org/10.1016/j.spmi.2013.09.023

    Article  ADS  Google Scholar 

  17. Allaedini, G., Muhammad, A.: Study of influential factors in synthesis and characterization of cobalt oxide nanoparticles. J. Nanostructure Chem. 3(77), (2013). https://doi.org/10.1186/2193-8865-3-77

  18. Bindu Duvuru, H., Alla, S.K., Shaw, S.K., Meena, S.S., Gupta, N., Prasad, B.B.V.S.V., Kothawale, M.M., Kumar, M.K., Prasad, N.K.: Magnetic and dielectric properties of Zn substituted cobalt oxide nanoparticles. Ceram. Int. 45, 16512–16520 (2019). https://doi.org/10.1016/j.ceramint.2019.05.185

    Article  Google Scholar 

  19. Rani, S., Sharma, Y., Varma, G.D.: Mixed magnetic phases in Co3O4 nanoparticles synthesized by co-precipitation method. AIP Conf. Proc. 1591, 526–528 (2014). https://doi.org/10.1063/1.4872662

    Article  ADS  Google Scholar 

  20. Sharifi, S.L., Shakur, H.R., Mirzaei, A., Hosseini, M.H.: Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. Int. J. Nanosci. Nanotechnol. 9, 51–58 (2013)

    Google Scholar 

  21. Prabaharan, D.D.M., Sadaiyandi, K., Mahendran, M., Sagadevan, S.: Precipitation method and characterization of cobalt oxide nanoparticles. Appl. Phys. A Mater. Sci. Process. 123(264), (2017). https://doi.org/10.1007/s00339-017-0786-8

  22. Sumathi, S., Nehru, M.: Synthesis, characterization, and influence of fuel on dielectric and magnetic properties of cobalt ferrite nanoparticles. J. Supercond. Nov. Magn. 29, 1317–1323 (2016). https://doi.org/10.1007/s10948-016-3416-3

    Article  Google Scholar 

  23. Ahmad, Z., Atiq, S., Abbas, S.K., Ramay, S.M., Riaz, S., Naseem, S.: Structural and complex impedance spectroscopic studies of Mg-substituted CoFe2O4. Ceram. Int. 42, 18271–18282 (2016). https://doi.org/10.1016/j.ceramint.2016.08.154

    Article  Google Scholar 

  24. Joshi, J.H., Kanchan, D.K., Joshi, M.J., Jethva, H.O., Parikh, K.D.: Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017). https://doi.org/10.1016/j.materresbull.2017.04.013

    Article  Google Scholar 

  25. Alsayed, Z., Badawi, M.S., Awad, R.: Characterization of zinc ferrite nanoparticles capped with different PVP concentrations. J. Electron. Mater. 48, 4925–4933 (2019). https://doi.org/10.1007/s11664-019-07288-2

    Article  ADS  Google Scholar 

  26. Moro, F., Yu Tang, S.V., Tuna, F., Lester, E.: Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. J. Magn. Magn. Mater. 348, 1–7 (2013). https://doi.org/10.1016/j.jmmm.2013.07.064

    Article  ADS  Google Scholar 

  27. Al Boukhari, J., Zeidan, L., Khalaf, A., Awad, R.: Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 516, 116–124 (2019). https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  Google Scholar 

  28. Sharrouf, M., Awad, R., Marhaba, S., El-Said Bakeer, D.: Structural, optical and room temperature magnetic study of Mn-doped ZnO nanoparticles. Nano. 11, 1650042 (2015). https://doi.org/10.1142/S1793292016500429

    Article  Google Scholar 

  29. Tharayil, N.J., Sagar, S., Raveendran, R., Vaidyan, A.V.: Dielectric studies of nanocrystalline nickel–cobalt oxide. Phys. B Condens. Matter. 399, 1–8 (2007). https://doi.org/10.1016/j.physb.2007.03.037

    Article  ADS  Google Scholar 

  30. Diallo, A., Beye, A.C., Doyle, T.B., Park, E., Maaza, M.: Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem. Lett. Rev. 8, 30–36 (2015). https://doi.org/10.1080/17518253.2015.1082646

    Article  Google Scholar 

  31. De-Sheng, X., Yu, G., Wen-Jing, L., Ming-Su, S., Zai-Wen, L.: Photoluminescence property of Co3O4 nanowires. Chin. Phys. Lett. 24, 1756–1758 (2007). https://doi.org/10.1088/0256-307X/24/6/089

    Article  ADS  Google Scholar 

  32. Zhu, H.T., Luo, J., Liang, J.K., Rao, G.H., Li, J.B., Zhang, J.Y., Du, Z.M.: Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles. Phys. B Condens. Matter. 403, 3141–3145 (2008). https://doi.org/10.1016/j.physb.2008.03.024

    Article  ADS  Google Scholar 

  33. Gopinath, S., Sivakumar, K., Karthikeyen, B., Ragupathi, C., Sundaram, R.: Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method. Physica E. 81, 66–70 (2016). https://doi.org/10.1016/j.physe.2016.02.006

    Article  ADS  Google Scholar 

  34. Sinkó, K., Szabó, G., Zrínyi, M.: Liquid-phase synthesis of cobalt oxide nanoparticles. J. Nanosci. Nanotechnol. 11, 4127–4135 (2011). https://doi.org/10.1166/jnn.2011.3875

    Article  Google Scholar 

  35. Sahoo, S.C., Venkataramani, N., Prasad, S., Bohra, M., Krishnan, R.: Stability of nonthermodynamic equilibrium cation distribution frozen during pulsed laser deposition of Co-ferrite thin films. Appl. Phys. A Mater. Sci. Process. 98, 889–894 (2010). https://doi.org/10.1007/s00339-009-5471-0

    Article  ADS  Google Scholar 

  36. Chikazumi, S., Jr, C.D.G.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)

    Google Scholar 

  37. Al-Qirby, L.M., Radiman, S., Siong, C.W., Ali, A.M.: Sonochemical synthesis and characterization of Co3O4 nanocrystals in the presence of the ionic liquid [EMIM][BF 4 ]. Ultrason. Sonochem. 38, 640–651 (2017). https://doi.org/10.1016/j.ultsonch.2016.08.016

    Article  Google Scholar 

  38. Han, D.H., Wang, J.P., Luo, H.L.: Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176–182 (1994). https://doi.org/10.1016/0304-8853(94)90462-6

    Article  ADS  Google Scholar 

  39. Ahmad, M.M.: Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered Li5La3Nb2O12 nanomaterials. Ceram. Int. 5(PA), 6398–6408 (2015). https://doi.org/10.1016/j.ceramint.2015.01.077

    Article  Google Scholar 

  40. Mansour, S.F., Abdo, M.A.: Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017). https://doi.org/10.1016/j.jmmm.2016.12.039

    Article  ADS  Google Scholar 

  41. Gokul, B., Matheswaran, P., Abhirami, K.M., Sathyamoorthy, R.: Structural and dielectric properties of NiO nanoparticles. J. Non-Cryst. Solids. 363, 161–166 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.12.007

    Article  ADS  Google Scholar 

  42. Dakhel, A.A.: Dielectric relaxation behaviour of Li and La co-doped NiO ceramics. Ceram. Int. 39(4), 4263–4268 (2013). https://doi.org/10.1016/j.ceramint.2012.10.278

    Article  Google Scholar 

  43. Nandan, K.R., Kumar, A.R.: Structural and electrical properties of Ca0.9Dy0.1MnO3 prepared by sol-gel technique. J. Mater. Res. Technol. 8, 2996–3003 (2019). https://doi.org/10.1016/j.jmrt.2017.05.020

    Article  Google Scholar 

Download references

Acknowledgments

This research was accomplished in the Specialized Materials Science Lab and Advanced Nanomaterials Research Lab, Physics Department, Faculty of Science, Beirut Arab University, Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, A.M., Awad, R. Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method. J Supercond Nov Magn 33, 1395–1404 (2020). https://doi.org/10.1007/s10948-019-05296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05296-1

Keywords

Navigation