Skip to main content
Log in

Studies of physico-chemical properties and fractal dimensions of selected high-temperature superconductor surfaces

  • Surface
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Properties relating to porosity of solids (fractal dimensions, surface roughness parameters) were evaluated from atomic force microscopy (AFM) and nitrogen adsorption-desorption isotherms measured at 77 K for selected high-temperature [(RE) Ba2Cu3O7−x, RE=Y, Sm] superconductors. Adsorption capacity, specific surface area, fractal dimensions were determined from adsorption-desorption isotherms. The adsorption isotherms of all samples were S-shaped and belong to type II according to the IUPAC classification. A linear relationship was demonstrated between the fractal coefficients calculated by using the two methods and values of adsorption capacity of monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Klauda, T. Kasser, B. Mayer, Ch. Neumann, F. Schnell, B. A. Aminov, A. Baumfalk, H. Chaloupka, S. Kolesov, H. Piel, N. Klein, S. Schornstein and M. Bareiss, IEEE Trans. Microwave Theory Tech., 48 (2000) 1227.

    Article  CAS  Google Scholar 

  2. E. R. Soares, J. D. Fuller, P. J. Marozick and R. Z. Alvarez, IEEE Trans. Microwave Theory Tech., 48 (2000) 1190.

    Article  CAS  Google Scholar 

  3. R. Romanofsky, J. D. Warner, S. A. Alterowitz, L. Covey, A. Smith, P. Newman and K. G. Duh, IEEE Trans. Microwave Theory Tech., 48 (2000) 1216.

    Article  Google Scholar 

  4. E. Polturak, G. Koren, I. Flor, R. Waller and M. Guelman, IEEE Trans. Microwave Theory Tech., 48 (2000) 1289.

    Article  Google Scholar 

  5. J. S. Kwak, J. H. Lee, J. P. Hong, W. S. Kim and K. R. Char, IEEE Trans. Appl. Supercond., 13 (2003) 17.

    Article  Google Scholar 

  6. B. A. Willemsen, IEEE Trans. Appl. Supercond., 11 (2001) 60.

    Article  Google Scholar 

  7. J. S. Hong, M. J. Lancaser, D. Jedamzik, R. B. Greed and J. G. Mage, IEEE Trans. Microwave Theory Tech., 48 (2000) 1240.

    Article  Google Scholar 

  8. B. Marcilhac, Y. Lemaitre, D. Mansar and J. G. Mage, IEEE Trans. Appl. Supercond., 9 (1999) 4014.

    Article  Google Scholar 

  9. J. S. Hong, E. P. McErlean and B. M. Karyamapudi, IEEE Trans. Microwave Theory Tech., 53 (2005) 1976.

    Article  Google Scholar 

  10. K. Yamanaka, A. Akasegawa, M. Kai and T. Nakanishi, IEEE Trans. Appl. Supercond., 15 (2005) 1024.

    Article  CAS  Google Scholar 

  11. F. Ricci, V. Boffa, G. Dai, G. Grassano, R. Mele, R. Tebano, D. Arena, G. Bertin, N. P. Magnani, G. Zarba, A. Andreone, A. Cassinese and R. Vaglio, IEEE Trans. Appl. Supercond., 15 (2005) 988.

    Article  Google Scholar 

  12. S. Y. Lee and B. Oh, J. Supercond., 16 (2003) 823.

    Article  CAS  Google Scholar 

  13. R. Semerad, J. Knauf, K. Irgmaier and W. Prusseit, Physica C, 378-381 (2002) 1414.

    Article  CAS  Google Scholar 

  14. S. Li, J. Huang, Q. Meng, L. Sun, Q. Zhang, F. Li, A. He, X. Zhang, Ch. Li and Y. He, IEEE Trans. Microwave Theory Tech., 55 (2007) 754.

    Article  Google Scholar 

  15. Y. B. Zho, J. W. Xiong, S. F. Wang, Y. L. Zhou, Q. Zhang, S. Y. Dai, Z. H. Chen, H. B. Lu and G. Z. Yang, J. Supercond., 16 (2003) 967.

    Google Scholar 

  16. M. A. Hein, R. G. Humphreys, P. J. Hirst, S. H. Park and D. E. Oates, J. Supercond., 16 (2003) 895.

    CAS  Google Scholar 

  17. A. Cassinese, M. Barra, W. Ciccognani, M. Cirillo, M. De Dominicis, E. Limiti, A. Prigiobbo, R. Russo and R. Vaglio, IEEE Trans. Microwave Theory Tech., 52 (2004) 97.

    Article  Google Scholar 

  18. G. Zhang, M. J. Lancaster and F. Hung, IEEE Trans. Microwave Theory Tech., 54 (2006) 559.

    Article  Google Scholar 

  19. D. Seron, H. Kokabi, M. Rabii, S. Sautrot and G. Alquie, J. Supercond., 16 (2003) 857.

    Article  CAS  Google Scholar 

  20. B. W. Tao, Y. R. Li, X. Z. Liu, M. He and J. Geerk, J. Vac. Sci. Technol. A, 20 (2002) 1898.

    Article  CAS  Google Scholar 

  21. K. Chen, M. J. Chen, J. H. Chen, H. Ch. Yang, L. M. Wang, Ch. Y. Huang and B. Wang, IEEE Trans. Appl. Supercond., 11 (2001) 4010.

    Article  Google Scholar 

  22. Y. C. Fan, A. G. Fitzgerald and J. A. Cairns, J. Vac. Sci. Technol., B, 18 (2000) 2377.

    Article  CAS  Google Scholar 

  23. T. Watanabe, Y. Ohashi, T. Maeda, M. Mimura and I. Hirabayashi, IEEE Trans. Appl. Supercond., 13 (2003) 2484.

    Article  CAS  Google Scholar 

  24. A. Eriksson, A. N. Deleniv and S. Gevorgian, IEEE Trans. Appl. Supercond.,14 (2004) 1.

    Article  CAS  Google Scholar 

  25. S. Pal, Ch. Stevens and D. J. Edwards, IEEE Trans. Microwave Theory Tech., 54 (2006) 768.

    Article  CAS  Google Scholar 

  26. J. Mazierska and C. Wilker, IEEE Trans. Appl. Supercond., 11 (2001) 4140.

    Article  Google Scholar 

  27. J. Krupka and J. Mazierska, IEEE Trans. Microwave Theory Tech., 48 (2000) 1270.

    Article  CAS  Google Scholar 

  28. A. Porch, D. W. Huish, A. V. Velichko, M. J. Lancaster, J. S. Abell, A. Perry and D. P. Almond, IEEE Trans. Appl. Supercond., 15 (2005) 3706.

    Article  CAS  Google Scholar 

  29. G. W. Chądzyński, J. Stępień-Damm and Z. Damm, In J. Keller and E. Robens (Eds) ’Microbalance Techniques’, Multi-Science Publishing, Brentwood 1994 p. 169.

    Google Scholar 

  30. J. L. MacManus-Driscoll, Adv. Mater., 9 (1997) 457.

    Article  CAS  Google Scholar 

  31. G. W. Chądzyński, J. Stępień-Damm and Z. Damm, J. Therm. Anal. Cal., 55 (1999) 691.

    Article  Google Scholar 

  32. G. W. Chądzyński, J. Therm. Anal. Cal., 62 (2000) 354.

    Google Scholar 

  33. C. Kwon, L. R. Kinder, Y. Gim, Y. Fan, J. Y. Coulter, M. P. Maley, S. R. Foltyn, D. E. Peterson and Q. X. Jia, IEEE Trans. Appl. Supercond., 9 (1999) 1575.

    Article  Google Scholar 

  34. P. Staszczuk, D. Sternik, G. W. Chądzyński and V. V. Kutarov, J. Alloys Compd., 367 (2004) 277.

    Article  CAS  Google Scholar 

  35. P. Staszczuk, D. Sternik, G. W. Chądzyński, E. Robens and M. Błachnio, J. Therm. Anal. Cal., 86 (2006) 133.

    Article  CAS  Google Scholar 

  36. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 309.

    Article  CAS  Google Scholar 

  37. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73 (1951) 373.

    Article  CAS  Google Scholar 

  38. A. B. Kiselev, ’The Structure and Properties of Porous Materials’, Butterworths, London 1958, p. 195.

    Google Scholar 

  39. P. Pfeifer and D. Avnir, J. Chem. Phys., 79 (1983) 4573.

    Google Scholar 

  40. P. Pfeifer, Fractals in Physics, North-Holland, Amsterdam, 1986 p. 72.

    Google Scholar 

  41. A. V. Neimark, Zh. Fiz. Khim., 64 (1990) 2593.

    CAS  Google Scholar 

  42. A. V. Neimark, E. Robens and K. K. Unger, Z. Phys. Chem., 187 (1994) 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Chądzyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chądzyński, G.W., Staszczuk, P., Sternik, D. et al. Studies of physico-chemical properties and fractal dimensions of selected high-temperature superconductor surfaces. J Therm Anal Calorim 94, 623–626 (2008). https://doi.org/10.1007/s10973-008-9346-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9346-y

Keywords

Navigation