Skip to main content
Log in

Sintering of bioceramics using a modified domestic microwave oven

Natural hydroxyapatite sintering

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, hydoxyapatite (HA) prepared from calcined bovine bone was studied. Two methods were used for HA sintering: conventional sintering (CS) and microwave sintering (MS). HA was obtained by calcination of bovine bone at 800 °C for 4 h followed by wet ball milling. Afterwards, the powder was compacted under 75 MPa and sintered for 2 h at different temperatures, from 1050 to 1200 °C. It has been found that the bulk density of HA increases by increasing sintering temperature when both CS and MS were used. Nevertheless, at the same temperature and for a shorter time (15 min), the HA sintered by microwave were characterised by a density relatively higher than that of sintered by conventional furnace. For example, at 1100 °C the bulk densities of samples using CS and MS were about 2.49 (for 120 min) and 2.93 (for 15 min) g/cm3, respectively. Furthermore, a near theoretical density (98.6%) was obtained when HA samples were sintered at 1200 °C for 15 min only but using the proposed MS, which was much higher than that (89.7%) of HA samples sintered at the same temperature for longer holding time (120 min). Besides this, the X-ray analyses have shown that heat-treatment, using these two processes, has lead to HA decomposition into tricalcium phosphate and/or tetracalcium phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  2. Liu C, Huang Shen YW, Cui J. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials. 2001;22:301–6.

    Article  CAS  Google Scholar 

  3. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11:2027–35.

    Article  CAS  Google Scholar 

  4. Osaka A, Miura Y, Takeuchi K, Asada M, Takahashi K. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci Mater in Med. 1991;25:51–5.

    Article  Google Scholar 

  5. Jillavenkatesa A, Condrate RA Sr. Sol-gel processing of hydroxyapatite. J Mater Sci. 1998;33:4111–9.

    Article  CAS  Google Scholar 

  6. Varma HK, Kalkura SN, Sivakumar R. Polymeric precursor route for the preparation of calcium phosphate compounds. Ceram Int. 1998;24:467–70.

    Article  CAS  Google Scholar 

  7. Anee Kuriakose T, Narayana S, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, Betzel C. Synthesis of stoichiometric nano crystalline by hydroxyapatite by ethanol based sol-gel technique at low temperature. J Cryst Growth. 2004;263:517–23.

    Article  Google Scholar 

  8. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Quantification of bone ingrowth within bone-derived porous hydroxyapatite lmplants of varying density. J Mater Sci Mater in Med. 1999;10:663–70.

    Article  CAS  Google Scholar 

  9. Joschek S, Nies B, Krotz R, Goepferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000;21:1645–58.

    Article  CAS  Google Scholar 

  10. Mezahi F, Harabi A, Zouai S, Achour S, Bernache-Assollant D. Effect of stabilized ZrO2. Al2O3 and TiO2 on sintering of hydroxyapatite. Mater Sci Forum. 2005;492–493:241–8.

    Article  Google Scholar 

  11. Mezahi FZ, Oudadesse H, Harabi A, Lucas-Girot A, Le Gal Y, Chaair H, Cathelineau G. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment: comparison to synthetic hydroxyapatite. J Therm Anal Calorim. 2009;95:21–9.

    Article  CAS  Google Scholar 

  12. Xie Z, Yang J, Huang Y. Microwave processing and properties with different dielectric loss. J Eur Ceram Soc. 1999;19:381–7.

    Article  CAS  Google Scholar 

  13. Tinga WR. Fundamentals of microwave-material interactions and sintering. In: Sutton WH, Brooks MH, Chabinsky IJ, editors. Microwave processing of materials, vol 124. Pittsburgh PA: Materials Research Society; 1988. p. 33–43.

  14. Metaxas AC, Binner JGP. Advanced ceramic processing technology. In: Binner JGP, editor. Microwave processing of ceramics. New Jersey: Noyes Publications; 1990. p. 285–367.

  15. Janney MA, Kimrey HD. Materials research society symposium proceedings: diffusion-controlled processes in microwave fired oxide ceramics. In: Snyder WB, Sutton WH Jr, Iskander MF, Johnson DL, editors. Microwave processing of materials II, vol 189. Pittsburgh: Materials Research Society; 1991. p. 215–227.

  16. Sheppard LM. Microwave sintering of Ce-Y-ZTA composite. Am Ceram Soc Bull. 1988;67:1656–61.

    Google Scholar 

  17. Katz JD, Blake RD. Microwave sintering of multiple alumina and composite components. Am Ceram Soc Bull. 1991;70:1304–7.

    CAS  Google Scholar 

  18. Harabi A, Karboua N, Achour S. Patent bending. Mentouri University, Constantine, Algeria.

  19. Tadic D, Epple M. A thorough physicochemical characterisation of calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  CAS  Google Scholar 

  20. Karboua N. Realization of high temperature heating system using a domestic microwave oven 2.45 GHz. Magister Thesis, Mentouri University, Constantine, Algeria 2004.

  21. Driessens FCM. The mineral in bone. Dentin and tooth enamel. Bull Soc Chim Belg. 1980;89:663–89.

    Article  CAS  Google Scholar 

  22. Posner AS. Crystal chemistry of bone mineral. Physiol Rev. 1969;49:760–92.

    CAS  Google Scholar 

  23. Hancock RGV, Grynpas MD, Alpert B. Are archaeological bones similar to modern bones? An INAA assessment. J Radioanal Nucl Chem. 1987;110:283–91.

    Article  CAS  Google Scholar 

  24. Haberko K, Mirosław Bućko M, Brzezińska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarębski J. Natural hydroxyapatite—its behaviour during heat treatment. J Eur Ceram Soc. 2006;26:537–42.

    Article  CAS  Google Scholar 

  25. Koumoulidis GC, Trapalis CC, Vaimakis TC. Sintering of hydroxyapatite lath-like powders. J Therm Anal Calorim. 2006;84:165–74.

    Article  CAS  Google Scholar 

  26. Petkova V, Yaneva V. Thermal behavior and phase transformations of nanosized carbonate apatite (Syria). J Therm Anal Calorim. 2010;99:179–89.

    Article  CAS  Google Scholar 

  27. Mendes LC, Rodrigues RC, Silva EP. Thermal, structural and morphological assessment of PVP/HA composites. J Therm Anal Calorim. 2010;101:899–905.

    Article  CAS  Google Scholar 

  28. Pan Y, Huang JL, Shao CY. Preparation of β-TCP with high thermal stability by solid reaction route. J Mater Sci. 2003;38:1049–56.

    Article  CAS  Google Scholar 

  29. Vani R, Girija EK, Elayaraja K, Prakash Parthiban S, Kesavamoorthy R, Narayana Kalkura S. Hydrothermal synthesis of porous triphasic hydroxyapatite/(α and β) tricalcium phosphate. J Mater Sci. 2009;20:S34–48.

    Google Scholar 

  30. Priya A, Nath S, Biswas K, Basu B. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J Mater Sci Mater Med. 2010;21:1817–28.

    Article  CAS  Google Scholar 

  31. Fang Y, Agrawal DK, Roy DM, Roy R. Microwave sintering of hydroxyapatite ceramics. J Mater Res. 1994;9:180–7.

    Article  CAS  Google Scholar 

  32. Fang Y, Agrawal DK, Roy DM, Roy R. Fabrication of porous hydroxyapatite ceramics by microwave processing. J Mater Res. 1992;7:490–3.

    Article  CAS  Google Scholar 

  33. Locardi B, Pazzaglia VE, Gabbi C, Profilo B. Thermal behavior of hydroxyapatite intended for medical applications. Biomaterials. 1993;14:437–41.

    Article  CAS  Google Scholar 

  34. Legeros RZ, Legeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific; 1993. p. 139–180.

  35. Cihlar J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 1999;34:6121–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Harabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harabi, A., Belamri, D., Karboua, N. et al. Sintering of bioceramics using a modified domestic microwave oven. J Therm Anal Calorim 104, 383–388 (2011). https://doi.org/10.1007/s10973-010-1115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1115-z

Keywords

Navigation