Skip to main content

Advertisement

Log in

The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper focus on physicochemical changes in bio-hydroxyapatite (BIO-HAp) from bovine femur obtained by calcination at high temperatures: 520–620 (each 20 °C) at 7.4 °C/min and from 700 to 1100 °C (each 100 °C) at three heating rates: 7.4, 9.9, and 11.1 °C/min. BIO-HAp samples were obtained using a multi-step process: cleaning, milling, hydrothermal process, calcination in an air atmosphere, and cooling in furnace air. Inductively Couple Plasma (ICP) showed that the presence of Mg, K, S, Ba, Zn, and Na, is not affected by the annealing temperature and heating rate. While Scanning Electron Microscopy (SEM) images showed the continuous growth of the HAp crystals during the calcination process due to the coalescence phenomenon, and the Full Width at the Half Maximum for the X-ray patterns for temperatures up to 700 is affected by the annealing temperature and the heating rate. Through X-ray diffraction, thermal, and calorimetric analysis (TGA-DSC), a partial dehydroxylation of hydroxyapatite was found in samples calcined up to 900 °C for the three heating rates. Also, Ca/P molar ratio decreased for samples calcined up to 900 °C as a result of the dehydroxylation process. NaCaPO4, CaCO3, Ca3(PO4)2, MgO, and Ca(H2PO4)2 are some phases identified by X-ray diffraction; some of them are part of the bone and others were formed during the calcination process as a function of annealing temperature and heating rate, as it is the case for MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Londoño-Restrepo SM, Ramirez-Gutierrez CF, del Real A, Rubio-Rosas E, Rodriguez-García ME. Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. J Mater Sci. 2016;51(9):4431–41.

    Article  Google Scholar 

  2. Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasesc S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Mater Sci Eng C. 2014;43:153–63.

    Article  CAS  Google Scholar 

  3. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1):1–31.

    Article  Google Scholar 

  4. Campa Molina J, Ulloa Godínez GS, Bucio Galindo L, Belío IA, Velazquez R, Rivera Muñoz EM. Chapter II, Tejido óseo y esmalte dental. In: Biomateriales: Fundamentos, técnicas y aplicaciones. Jalisco: Universidad de Guadalajara; 2007. p. 39–91.

  5. Behari J Elements of bone biophysics. In: biophysical bone behavior: principles and application. Chichester: Wiley; 2009. p.1–52.

  6. Barakat NA, Khil MS, Omran AM, Sheikh FA, Kim HY. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Technol. 2009;209(7):3408–15.

    Article  CAS  Google Scholar 

  7. Sobczak-Kupiec A, Wzorek Z. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Cer Inter. 2012;38(1):641–7.

    Article  CAS  Google Scholar 

  8. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R. A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal treatment of bovine bone. J Ind Eng Chem. 2014;20(1):245–58.

    Article  CAS  Google Scholar 

  9. Li Z, Thompson BC, Dong Z, Khor KA. Optical and biological properties of transparent nanocrystalline hydroxyapatite obtained through spark plasma sintering. Mater Sci Eng C. 2016;69:956–66.

    Article  CAS  Google Scholar 

  10. Eslami N, Mahmoodian R, Hamdi M, Khatir NM, Herliansyah MK, Rafieerad AR. Study the synthesis, characterization and immersion of dense and porous bovine hydroxyapatite structures in Hank’s balanced salt solution. JOM. 2017;69(4):691–8.

    Article  CAS  Google Scholar 

  11. Ramirez-Gutierrez CF, Londoño-Restrepo SM, del Real A, Mondragón MA, Rodriguez-García ME. Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone. Cer Inter. 2017;43(10):7552–9.

    Article  CAS  Google Scholar 

  12. Bahrololoom ME, Javidi M, Javadpour S, Ma J. Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash. J Ceram Process Res. 2009;10:129–38.

    Google Scholar 

  13. Herliansyah MK, Hamdi M, Ide-Ektessabi A, Wildan MW, Toque JA. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater Sci Eng C. 2009;29(5):1674–80.

    Article  CAS  Google Scholar 

  14. Ooi CY, Hamdi M, Ramesh S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int. 2007;33(7):1171–7.

    Article  CAS  Google Scholar 

  15. Ramirez-Gutierrez CF, Palechor-Ocampo AF, Londoño-Restrepo SM, Millán-Malo BM, Rodriguez-García ME. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone. J Biomed Res Part B. 2016;104(2):339–44.

    Article  CAS  Google Scholar 

  16. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R. Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Cer Int. 2013;39(5):5751–63.

    Article  CAS  Google Scholar 

  17. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. 1st ed. Amsterdam: Elsevier; 1998.

    Google Scholar 

  18. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 2010;36(8):2383–93.

    Article  CAS  Google Scholar 

  19. Sobczak A, Kowalski Z, Wzorek Z. Preparation of hydroxyapatite from animal bones. Acta Bioeng Biomech. 2009;11(4):23–28.

    Google Scholar 

  20. Yoganand CP, Selvarajan V, Goudouri OM, Paraskevopoulos KM, Wu J, Xue D. Preparation of bovine hydroxyapatite by transferred arc plasma. Curr Appl Phys. 2011;11(3):702–9.

    Article  Google Scholar 

  21. Giraldo-Betancur AL, Espinoza-Arbeláez DG, del Real-López A, Millán-Malo BM, Rivera-Muñoz E, Gutiérrez-Cortez E, Pineda-Gómez P, Jiménez-Sandoval SJ, Rodriguez-Garcia ME. Comparison of physicochemical properties of bio and commercial hydroxyapatite. Curr Appl Phys. 2013;13:1383–90.

    Article  Google Scholar 

  22. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49(4):1461–75.

    Article  CAS  Google Scholar 

  23. Joschek S, Nies B, Krotz R, Göpferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000;21(16):1645–58.

    Article  CAS  Google Scholar 

  24. Tõnsuaadu K, Gross KA, Plūduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110(2):647–59.

    Article  Google Scholar 

  25. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065–72.

    Article  CAS  Google Scholar 

  26. Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci Mater Med. 1993;4(2):165–8.

    Article  CAS  Google Scholar 

  27. Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice—I On the existence of calcium and strontium oxyapatites. J Inorg Nucl Chem. 1978;40(1):15–21.

    Article  CAS  Google Scholar 

  28. Gross KA, Berndt CC. Thermal processing of hydroxyapatite for coating production. J Biomed Mater Res. 1998;39(4):580–7.

    Article  CAS  Google Scholar 

  29. Trębacz H, Wójtowicz K. Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol. 2005;37(5):257–62.

    Article  Google Scholar 

  30. Matsunaga K, Murata H. Formation energies of substitutional sodium and potassium in hydroxyapatite. Mater Tran. 2009;50(5):1041–5.

    Article  CAS  Google Scholar 

  31. Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, Maxwell CA, Rogers KD, Manning DAC, White ML, Lopez-Capel E, Collins MJ, Buckley M, Penkman KEH, Woodgate SL. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42(23):9807–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. M. Londoño-Restrepo thanks the Consejo Nacional de Ciencia y Tecnologıa (CONACYT-Mexico) for the financial support of her Ph.D. thesis, and PAPIIT project number IN112317 for the financial support of this investigation as well. The authors would like to thank Dr. Genoveva Hernandez-Padrón for her technical support for the Raman experiments, Dra. Beatriz Millan Malo and M. Alicia del Real for technical support, and Carolina Muñoz from CGEO-UNAM for the ICP determinations. Authors thank Alexandra Morin Dube for the technical English revision of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Rodriguez-García.

Ethics declarations

Conflict of Interest

The author declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londoño-Restrepo, S.M., Jeronimo-Cruz, R., Rubio-Rosas, E. et al. The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone. J Mater Sci: Mater Med 29, 52 (2018). https://doi.org/10.1007/s10856-018-6061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6061-5

Navigation