Skip to main content
Log in

Thermal behavior of Mullite–Zirconia–Zircon composites. Influence of Zirconia phase transformation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mullite–Zirconia–Zircon composites have proved to be suitable for high-temperature structural applications, with good mechanical and fracture properties and good thermal shock resistance. In this paper, the special dilatometric behavior of a series of Mullite–Zirconia–Zircon (3–40 vol.% ZrO2) composites is evaluated and compared with that of a pure Zircon material and explained in terms of the high Zirconia linear thermal expansion coefficient (α) and Zirconia martensitic transformation. Linear thermal expansion (α) up to 1273 K is studied and correlated with the phase composition of the composites; a linear correlation was found with the m-ZrO2 content evaluated with the Rietveld method. Zirconia (m-ZrO2) dispersed grains containing ceramics material showed a hysteresis in a reversible dilatometric curve (DC). The martensitic transformation temperatures could be evaluated and then compared with the endothermic and exothermic peaks temperatures obtained from the differential thermal analysis (DTA). Furthermore, the hysteresis area was correlated with m-ZrO2 content, where composites with less than 10 vol.% ZrO2 did not show this behavior, and from this content up to 40 vol.% of ZrO2 a linear increase of the hysteresis area was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torrecillas R, Moya JS, De Aza S, Gros H, Fantozzi G. Microstructure and mechanical properties of mullite–zirconia reaction-sintered composites. Acta Metallurgica. 1993;41(6):1647–52.

    Article  CAS  Google Scholar 

  2. Lathabai S, Hay DG, Wagner F, Claussen N. Reaction-bonded mullite/zirconia composites. J Am Ceram Soc. 1996;79(1):248–56.

    Article  CAS  Google Scholar 

  3. Hamidouche M, Bouaouadja N, Osmani H, Torrecillias R, Fantozzi G. Thermomechanical behavior of Mullite–Zirconia composite. J Eur Ceramic Soc. 1996;16(4):441–5.

    Article  CAS  Google Scholar 

  4. Jang B-K. Microstructure of nano SiC dispersed Al2O3–ZrO2 composites. Mater Chem Phys. 2005;93(2-3):337–41.

    Article  CAS  Google Scholar 

  5. Hirvonen A, Nowak R, Yamamoto Y, Sekino T, Niihara K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceramic Soc. 2006;26(8):1497–505.

    Article  CAS  Google Scholar 

  6. Sarkar D, Adak S, Mitra NK. Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: Powder synthesis and transformation behavior during fracture. Compos Part A Appl Sci Manuf. 2007;38(1):124–31.

    Article  Google Scholar 

  7. Yugeswaran S, Selvarajan V, Dhanasekaran P, Lusvarghi L. Transferred arc plasma processing of mullite–zirconia composite from natural bauxite and zircon sand. Vacuum. 2008;83(2):353–9.

    Article  CAS  Google Scholar 

  8. Rendtorff N, Garrido L, Aglietti E. Thermal shock behavior of dense Mullite–Zirconia composites obtained by two processing routes. Ceram Int. 2008;34(8):2017–24.

    Article  CAS  Google Scholar 

  9. Belhouchet H, Hamidouche M, Bouaouadja N, Garnier V, Fantozzi G. Elaboration and characterization of mullite–zirconia composites from gibbsite, boehmite and zircon. Ceramics Silicaty. 2009;53(3):205–10.

    CAS  Google Scholar 

  10. Ibarra Castro MN, Almanza Robles JM, Cortes Hernández DA, Escobedo Bocardo JC, Torres Torres J. Development of mullite/zirconia composites from a mixture of aluminum dross and zircon. Ceram Int. 2009;35(2):921–4.

    Article  CAS  Google Scholar 

  11. Mecif A, Soro J, Harabi A, Bonnet JP. Preparation of mullite- and zircon-based ceramics using kaolinite and zirconium oxide: a sintering study. J Am Ceram Soc. 2010;93(5):1306–12.

    CAS  Google Scholar 

  12. Chockalingam S, Traver HK. Microwave sintering of β-SiAlON-ZrO2 composites. Mater Des. 2010;31(8):3641–6.

    Article  CAS  Google Scholar 

  13. Tür YK, Sünbül AE, Yilmaz H, Duran C. Effect of mullite grains orientation on toughness of mullite/zirconia composites. Ceram Trans. 2010;210:273–8.

    Google Scholar 

  14. Curran DJ, Fleming TJ, Towler MR, Hampshire S. Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. J Mater Sci Mater Med. 2010;21(4):1109–20.

    Article  CAS  Google Scholar 

  15. Ma W, Wen L, Guan R, Sun X, Li X. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. 3rd International Conference on Spray Deposition and Melt Atomization (SDMA 2006) and the 6th International Conference on Spray Forming (ICSF VI). Mater Sci Eng A. 2008;477(1–2):100–106.

  16. Sahnoune F, Saheb N, Chegaar M, Goeuriot P. Microstructure and sintering behavior of mullite–zirconia composites. Mater Sci Forum. 2010;638–642:979–84.

    Article  Google Scholar 

  17. Calderon-Moreno JM, Yoshimura M. Al2O3–Y3AlO12(YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 2005;25(8 Spec. Iss.):1365–8.

    Article  CAS  Google Scholar 

  18. Hamidouche M, Bouaouadja N, Torrecillas R, Fantozzi G. Thermomechanical behavior of a Zircon–Mullite composite. Ceram Int. 2007;33(4):655–62.

    Article  CAS  Google Scholar 

  19. Naglieri V, Palmero P, Montanaro L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim. 2009;97(1):231–7.

    Article  CAS  Google Scholar 

  20. Shevchenko AV, Dudnik EV, Ruban AK, Redko VP, Lopato LM. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Metal Ceram. 2010;49(1-2):42–9.

    Article  CAS  Google Scholar 

  21. Malek O, Vleugels J, Perez Y, De Baets P, Liu J, Van den Berghe S, Lauwers B. Electrical discharge machining of ZrO2 toughened WC composites. Mater Chem Phys. 2010;123(1):114–20.

    Article  CAS  Google Scholar 

  22. Sarkar SK, Lee BT. Evaluation and comparison of the microstructure and mechanical properties of fibrous Al2O3-(m-ZrO2)/t-ZrO2 composites after multiple extrusion steps. Ceram Int. 2010;36(6):1971–6.

    Article  CAS  Google Scholar 

  23. Pan C, Zhang L, Zhao Z, Qu Z, Yang Q, Huang X. Changes in microstructures and properties of Al2O3/ZrO2(Y2O3) with different content of ZrO2. Adv Mater Res. 2010;105–106(1):1–4.

    Article  Google Scholar 

  24. Rendtorff N, Garrido L, Aglietti E. Mullite–Zirconia–Zircon composites: properties and thermal shock resistance. Ceram Int. 2009;35(2):779–86.

    Article  CAS  Google Scholar 

  25. Rendtorff N, Garrido L, Aglietti E. Zirconia toughening of Mullite–Zirconia–Zircon composites obtained by direct sintering. Ceram Int. 2010;36(2):781–8.

    Article  CAS  Google Scholar 

  26. Zender H, Leistner H, Searle H. ZrO2 Materials for applications in the Ceramic Industry. Interceram. 1990;39(6):33–6.

    CAS  Google Scholar 

  27. Kelly P, Rose LF. The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci. 2002;47:463–557.

    Article  CAS  Google Scholar 

  28. Wang C, Zinkevich M, Aldinger F. The Zirconia–Hafnia system: DTA measurements and thermodynamic calculations. J Am Ceram Soc. 2006;89(12):3751–8.

    Article  CAS  Google Scholar 

  29. Luo X, Zhou W, Ushakov SV, Navrotsky A, Demkov AA. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009;80(13), 134119.

    Google Scholar 

  30. Wang C, Zinkevich M, Aldinger F. On the thermodynamic modeling of the Zr–O system. Calphad. 2004;28(3):281–92.

    Article  CAS  Google Scholar 

  31. Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92(9):1901–20.

    Article  CAS  Google Scholar 

  32. Moriya Y, Navrotsky A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic–tetragonal phase transition. J Chem Thermodyn. 2006;38(3):211–23.

    Article  CAS  Google Scholar 

  33. Skovgaard M, Ahniyaz A, Sørensen BF, Almdal K, van Lelieveld A. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders. J Eur Ceram Soc. 2010;30:2749–55.

    Article  CAS  Google Scholar 

  34. Ownby PD, Burt DD, Stewart DV. Experimental study of the thermal expansion of yttria stabilized Zirconia ceramics. Thermochim Acta. 1991;190(1):39–42.

    Article  CAS  Google Scholar 

  35. Kingery WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38(1):3–15.

    Article  Google Scholar 

  36. Hasselman DPH. Elastic energy and surface energy as design criteria of thermal shock. J Am Ceram Soc. 1963;46(11):535–40.

    Article  CAS  Google Scholar 

  37. Hasselman DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc. 1969;52:600–4.

    Article  CAS  Google Scholar 

  38. Hasselman DPH. Thermal stress resistance parameters of brittle refractory ceramics: a compendium. Am Ceram Soc Bull. 1970;49(12):1033–7.

    Google Scholar 

  39. Miyazaki H. The effect of TiO2 additives on the structural stability and thermal properties of yttria fully-stabilized zirconia. J Therm Anal Calorim. 2009;98(2):343–6.

    Article  CAS  Google Scholar 

  40. Szirtes L, Megyeri J, Kuzmann E. Thermal behaviour of transition- and tetravalent-metal oxides and phosphorous oxide composites. J Therm Anal Calorim. 2008;92(2):649–53.

    Article  CAS  Google Scholar 

  41. Kyaw T, Okamoto Y, Hayashi K. Microstructures and mechanical properties of Mullite-(yttria, magnesia- and ceria-stabilized) Zirconia composites. J Mater Sci. 1997;32(20):5497–503.

    Article  CAS  Google Scholar 

  42. Ruh R, Mazdiyasni KS, Mendiratta M. Mechanical and microstructural characterization of mullite and mullite-SiC-whisker and ZrO2-toughened-mullite—SiC-whisker composites. J Am Ceram Soc. 1988;71(6):503–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rendtorff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendtorff, N.M., Garrido, L.B. & Aglietti, E.F. Thermal behavior of Mullite–Zirconia–Zircon composites. Influence of Zirconia phase transformation. J Therm Anal Calorim 104, 569–576 (2011). https://doi.org/10.1007/s10973-010-1030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1030-3

Keywords

Navigation