Skip to main content
Log in

Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The composite powders 90 vol.% Al2O3–5 vol.% YAG–5 vol.% ZrO2 were produced by doping commercial alumina powders with zirconium and yttrium chloride aqueous solutions. Both a nanocrystalline transition alumina and a pure α-phase powder were used as starting materials. The obtained materials were characterized by DTA-TG, XRD and dilatometric analyses and compared to the respective biphasic systems developed by the same procedure. Pressureless sintering at 1500 °C for 3 h was able to consolidate the doped powders in fully dense bodies, characterized by a very fine and homogeneous dispersion of the second phases into the micronic alumina matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

T-A:

α-alumina (TM-DAR Taimicron)

N-A:

Nanocrystalline transition alumina (NanoTek®)

T-AZ5:

95 vol.% Al2O3–5 vol.% YAG obtained from T-A doping

T-AY5:

95 vol.% Al2O3–5 vol.% YAG obtained from T-A doping

N-AY5:

95 vol.% Al2O3–5 vol.% YAG obtained from N-A doping

N-AY10:

90 vol.% Al2O3–10 vol.% YAG obtained from N-A doping

N-AY20:

80 vol.% Al2O3–20 vol.% YAG obtained from N-A doping

T-AYZ:

90 vol.% Al2O3–5 vol.% YAG–5 vol.% ZrO2 obtained from T-A doping

N-AYZ:

90 vol.% Al2O3–5 vol.% YAG–5 vol.% ZrO2 obtained from N-A doping

References

  1. Niihara K. New design concept of structural ceramics–ceramic nanocomposites. J Ceram Soc Jpn. 1991;99:974–82.

    CAS  Google Scholar 

  2. Sternitzke M. Review: structural ceramic nanocomposites. J Eur Ceram Soc. 1997;17:1061–82.

    Article  CAS  Google Scholar 

  3. Schehl M, Diaz LA, Torrecillas R. Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater. 2002;50:1125–39.

    Article  CAS  Google Scholar 

  4. Sarkar D, Adak S, Mitra NK. Preparation and characterization of an Al2O3–ZrO2 nanocomposite. Part I: powder synthesis and transformation behavior during fracture. Compos Part A. 2007;38:124–31.

    Article  CAS  Google Scholar 

  5. Wang H, Gao L, Shen Z, Nygren M. Mechanical properties and microstructures of Al2O3–5 vol% YAG composites. J Eur Ceram Soc. 2001;21:779–83.

    Article  CAS  Google Scholar 

  6. Palmero P, Simone A, Esnouf C, Fantozzi G, Montanaro L. Comparison among different sintering routes for preparing alumina–YAG nanocomposites. J Eur Ceram Soc. 2006;26:941–7.

    Article  CAS  Google Scholar 

  7. Jeong YK, Niihara K. Microstructure and mechanical properties of pressureless sintered Al2O3/SiC nanocomposites. NanoStruct Mater. 1997;9:193–6.

    Article  CAS  Google Scholar 

  8. Hirvonen A, Nowak R, Yamamoto Y, Sekino T, Niihara K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc. 2006;26:1497–505.

    Article  CAS  Google Scholar 

  9. Li WQ, Gao L. Processing, microstructure and mechanical properties of 25 vol% YAG–Al2O3 nanocomposites. NanoStruct Mater. 1999;11:1073–80.

    Article  CAS  Google Scholar 

  10. Torrecillas R, Schehl M, Díaz A, Menéndez JL, Moya JS. Creep behaviour of alumina/YAG nanocomposites obtained by a colloidal processing route. J Eur Ceram Soc. 2007;27:143–50.

    Article  CAS  Google Scholar 

  11. Boulle A, Oudjedi Z, Guinebretière R, Soulestin B, Dauger A. Ceramic nanocomposites obtained by sol–gel coating of submicron powders. Acta Mater. 2001;49:811–6.

    Article  CAS  Google Scholar 

  12. Torrecillas R, Moya JS, De Aza S, Gros H, Fantozzi G. Microstructure and mechanical properties of mullite–zirconia reaction-sintered composites. Acta Metall Mater. 1993;41:1647–52.

    Article  CAS  Google Scholar 

  13. Pena P, Miranzo P, Moya JS, De Aza S. Multicomponent toughned ceramic materials obtained by reaction sintering—Part 1. ZrO2–Al2O3–SiO2–CaO system. J Mater Sci. 1985;20:2011–22.

    Article  CAS  Google Scholar 

  14. Miranzo P, Pena P, Moya JS, De Aza S. Multicomponent toughned ceramic materials obtained by reaction sintering—Part 2. System ZrO2–Al2O3–SiO2–MgO. J Mater Sci. 1985;20:2702–10.

    Article  CAS  Google Scholar 

  15. Melo MF, Moya JS, Pena P, De Aza S. Multicomponent toughned ceramic materials obtained by reaction sintering—Part 2. System ZrO2–Al2O3–SiO2–TiO2. J Mater Sci. 1985;20:2711–8.

    Article  CAS  Google Scholar 

  16. Torrecillas R, Schehl M, Dìaz LA. Creep behaviour of alumina–mullite–zirconia nanocomposites obtained by a colloidal processing route. J Eur Ceram Soc. 2007;27:4613–21.

    Article  CAS  Google Scholar 

  17. Jang BK. Microstructure of nano SiC dispersed Al2O3–ZrO2 composites. Mater Chem Phys. 2005;93:337–41.

    Article  CAS  Google Scholar 

  18. Calderon-Moreno JM, Yoshimura M. Al2O3–Y3Al5O12 (YAG)–ZrO2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 2005;25:1365–8.

    Article  CAS  Google Scholar 

  19. Lee JH, Yoshikawa A, Fukuda T, Waku Y. Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers. J Cryst Growth. 2001;231:115–20.

    Article  CAS  Google Scholar 

  20. Palmero P, Montanaro L. Thermal and mechanical-induced phase transformations during YAG and alumina-YAG syntheses. J Therm Anal Calorim. 2007;88:261–7.

    Article  CAS  Google Scholar 

  21. Palmero P, Naglieri V, Chevalier J, Fantozzi G, Montanaro L. Alumina-based nanocomposites obtained by doping with inorganic salt solutions: application to immiscible and reactive systems. J Eur Ceram Soc. 2009;29:59–66.

    Article  CAS  Google Scholar 

  22. Montanaro L, Palmero P, Fantozzi G, Chevalier J. A comparison among different processing routes towards ceramic nanocomposites development. Proc. 10th Intern. Conf. of the European Ceramic Society, Goller Verlag (DEU) Berlin, June 17–20, Vol. 1; 2007. p. 1453–60.

  23. http://www.taimei-chem.co.jp.

  24. http://www.nanophase.com.

  25. Chen M, Hallstedt B, Gauckler LJ. Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ionics. 2004;170:255–74.

    Article  CAS  Google Scholar 

  26. Lakiza SM, Lopato LM. Stable and metastable phase relations in the system alumina–zirconia–yttria. J Am Ceram Soc. 1997;80:893–902.

    Article  CAS  Google Scholar 

  27. Bowen P, Carry C, Hofmann H, Legros C. Phase transformation and sintering of α-Al2O3—effects of powder characteristics and dopants (Mg or Y). Key Eng Mater. 1997;132:904–7.

    Article  Google Scholar 

  28. Ghosh A, Upudhyaya DD, Prasad R. Primary crystallization behavior of ZrO2–Y2O3 powders: in situ hot-stage XRD technique. J Am Ceram Soc. 2002;85:2399–403.

    Article  CAS  Google Scholar 

  29. Palmero P, Esnouf C, Fantozzi G, Montanaro L. Microstructural and phase evolution of γ-doped alumina powders toward the elaboration of Al2O3–YAG nanocomposite. Proceedings of the 11th European inter-regional conference on ceramics, 3–5 September 2008, Lausanne, Switzerland, pp 123–30.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Naglieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naglieri, V., Palmero, P. & Montanaro, L. Preparation and characterization of alumina-doped powders for the design of multi-phasic nano-microcomposites. J Therm Anal Calorim 97, 231–237 (2009). https://doi.org/10.1007/s10973-009-0261-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0261-7

Keywords

Navigation