Skip to main content

Advertisement

Log in

Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The formation of self-reinforced composites in the ZrO2–Y2O3–CeO2–Al2O3 system is investigated. Depending on different sintering conditions, plates of CeAlO3, T-ZrO2, and α-Al2O3 are formed in the matrix based on a solid solution of ZrO2. The self-reinforced composite with fracture toughness 17–20 MPa ⋅ m0.5 is obtained in optimum sintering conditions. In this composite, α-Al2O3 plates as well as individual Ce2O3 ⋅ 11Al2O3 plates are arranged in the matrix based on T-ZrO2. Selfreinforced composites in the ZrO2–Y2O3–CeO2–Al2O3 system have a considerable potential for various engineering ceramic materials with tailored combinations of properties, e.g., for medical applications (surgical tools and bioinert implants).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shevchenko, A. K. Ruban, and E. V. Dudnik, “Advanced zirconia ceramics,” Ogneupory Tekh. Keram., No. 9, 2–8 (2000).

  2. J.-D. Lin and J. Duh, “Fracture toughness and hardness of ceria- and yttria-doped tetragonal zirconia ceramics,” Mater. Chem. Phys., 78, 253–261 (2002).

    Article  CAS  Google Scholar 

  3. B. Bastid, P. Canale, and P. Odier, “Characterization of a new ternary Ce-tetragonal zirconia,” J. Eur. Ceram. Soc., 5, 289–293 (1989).

    Article  Google Scholar 

  4. F. F. Lange, “Transformation toughening. Part 4. Fabrication, fracture toughness and strength of Al2O3–ZrO2 composites,” J. Mater. Sci., 17, 247–254 (1982).

    Article  CAS  ADS  Google Scholar 

  5. A. V. Shevchenko, A. K. Ruban, E. V. Dudnik, et al., “Formation of self-reinforced gradient ceramic composites,” Functional Mat., No. 1, 67–70 (2001).

    Google Scholar 

  6. A. V. Shevchenko, E. V. Dudnik, V. A. Dubok, et al., “Biocompatible implants based on nanocrystalline ZrO2 powders,” Tekh. Mashinostr., No. 2 (58), 32–35 (2006).

    Google Scholar 

  7. G. S. Oleinik, Self-Reinforced Ceramic Materials [in Ukrainian], IPMA NASU, Kiev (1993), p. 46.

    Google Scholar 

  8. A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, et al., “Hydrothermal synthesis of nanocrystalline powders in the ZrO2–Y2O3–CeO2 system,” Powder Metall. Met. Ceram., 46, No. 1–2, 18 –25 (2007).

    Article  CAS  Google Scholar 

  9. E. V. Dudnik, A. V. Shevchenko, A. K. Ruban, et al., “Synthesis and properties of nanocrystalline 90 wt.% ZrO2(Y2O3, CeO2)–10 wt.% A12O3 powder,” Inorg. Mat., 44, No. 4, 409–413 (2008).

    CAS  Google Scholar 

  10. V. V. Scorokhod and S. M. Solonin, Physical-Metallurgical Bases of Powder Sintering [in Russian], Metallurgy, Moscow (1984), p. 159.

    Google Scholar 

  11. Yu. D. Tret’yakov, Solid-State Reactions [in Russian], Chemistry, Moscow (1978), p. 360.

    Google Scholar 

  12. V. Longo and D. Minichelli, “X-ray characterization of Ce2Zr3O10,” J. Am. Ceram. Soc., 56, No. 11, 600 (1973).

    Article  CAS  Google Scholar 

  13. W. Pyda, K. Haberko, and Z. Zurek, “Zirconia stabilized with a mixture of the rare earth oxides,” J. Eur. Ceram. Soc., 10, 453–459 (1992).

    Article  CAS  Google Scholar 

  14. E. Lucchini, S. Maschio, and E. Saldor, “Influenza delle condizioni di sinterizazione sulle proprieta meccamiche di una ”lega” ZrO2–CeO2 10.3 mol.%,” Ceram. Acta., 3, No. 2, 33–39 (1991).

    Google Scholar 

  15. A. I. Leonov, High-Temperature Chemistry of the Cerium Oxygen Compounds [in Russian], Leningrad (1969).

  16. D. Fan and L.-Q. Chen, “Computer simulation of grain growth and Ostwald ripening in alumina-zirconia two-phase composites,” J. Am. Ceram. Soc., 80, No. 7, 1773–1780 (1997).

    CAS  Google Scholar 

  17. S.-J. Cho, K.-H. Kim, D.-J. Kim, and K.-J. Yoon, “Abnormal grain growth at the interface of centrifugally cast alumina bilayer during sintering,” J. Am. Ceram. Soc., 83, No. 7, 1773–1776 (2000).

    CAS  Google Scholar 

  18. A. G. Evans and E. A. Charles, “Fracture toughness determinations by indentation,” J. Am. Ceram. Soc., 59, No. 7, 371–372 (1976).

    Article  CAS  Google Scholar 

  19. K. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation of K 1c of brittle solids by the indentation method with low crack-to indent rates,” J. Mat. Sci. Let., 1, No. 1, 13–16 (1982).

    Article  CAS  Google Scholar 

  20. D. K. Shetty, A. R. Rosenfield, and W. H. Duckworth, “Indenter flow geometry and fracture toughness estimate for a glass-ceramic,” J. Am. Ceram. Soc., 68, No. 10, C282–C284 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dudnik.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 1–2 (471), pp. 56–65, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, A.V., Dudnik, E.V., Ruban, A.K. et al. Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system. Powder Metall Met Ceram 49, 42–49 (2010). https://doi.org/10.1007/s11106-010-9199-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9199-3

Keywords

Navigation