Skip to main content
Log in

Study into melting-crystallization of silver thiogallate by the statistical thermal analysis method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of heat treatment of a liquid phase on “melting-crystallization” processes of silver thiogallate (AgGaS2) having chalcopyrite structure I \( \bar{4}2{\text{d}} \), has been studied by the method of statistical thermal analysis (STA). It is shown that the melting temperature of solid phase (T m) increases non-monotonic from 970 °C due to rise in the preliminary melt overheating, and T m reaches asymptotically 1010 °C. The equilibrium melting-crystallization temperature (\( T_{\text{m}}^{\text{o}} \)) has been defined as 989.2 °C. It is also found an extreme dependence of the melt supercooling on its overheating. The two curves of irregular dependence of nucleation rate on melt supercooling have been plotted at different melt overheating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kidyarov BI. Kinetics of crystal formation from liquid phase. Novosibirsk: Nauka; 1979.

    Google Scholar 

  2. Nitsch K. Thermal analysis study on water freezing and supercooling. J Therm Anal Calorim. 2009;95:11–4.

    Article  CAS  Google Scholar 

  3. Distanov VE, Drebushchak VA. Melting of PbBr2. A DSC investigation. J Therm Anal Calorim. 1999;57:599–605.

    Article  CAS  Google Scholar 

  4. Matthews ME, Alan TR. Effects of thermal history on solid state and melting behavior of amino acids. J Therm Anal Calorim. 2009;96:673–6.

    Article  CAS  Google Scholar 

  5. De Oliveira LM, Ferreira JM, Márcia RS, et al. Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4. J Therm Anal Calorim. 2009;97:167–72.

    Article  Google Scholar 

  6. Alves MCF, Souza SC, Silva MRS, et al. Thermal analysis applied in the crystallization study of SrSnO3. J Therm Anal Calorim. 2009;97:179–83.

    Article  CAS  Google Scholar 

  7. Bellich B, Borgogna M, Carnio D, Cesàro A. Thermal behavior of water in micro-particles based on alginate gel. J Therm Anal Calorim. 2009;97:871–8.

    Article  CAS  Google Scholar 

  8. Aleksandrov LN, Kidyarov BI, Mitnitskii PL. Statistic des Anfangstadium der Bildung von Kristallization Zentren in Schmelzen und Losungen. Kristall und Technik. 1973;8:31–43.

    Article  CAS  Google Scholar 

  9. Kidyarov BI, Kosyakov VI. The investigation of phase transition kinetics and phase diagrams by the method of statistical thermal analysis. In: Buzash I, editor. Thermal analysis. Proceedings of the 4th ICTA. Budapest: Akademiai Kiado; 1975 v.1. pp. 243–249.

  10. Kidyarov BI, Nikolaev IV. Investigation of the kinetics of crystallization of ternary semiconductor compounds by statistical thermal analysis. In: Dollimore D, editor. Proceedings of the first European symposium on thermal analysis. London: Heyden & Son Ltd; 1976, pp. 105–108.

  11. Kidyarov BI, Bolkhovityanov YuB, Demyanov EA. Statistical investigation of the kinetics of crystal nucleation in melt. Zhurnal Phys Khim. 1970;44:668.

    CAS  Google Scholar 

  12. Demyanov EA, Bolkhovityanov YuB, Kidyarov BI. Influence of the preliminary tempering and rate of cooling on nucleation kinetics in melt of germanium and indium antimonide. Zhurnal Phys Khim. 1972;46:2541–4.

    CAS  Google Scholar 

  13. Kidyarov BI, Nikolaev IV. Device of statistical thermal analysis. Ind Lab. 1977;43:564–7.

    CAS  Google Scholar 

  14. Cound VM, Davies PM, Hulme KF, Robertson DS. The electro-optic coefficient of silver thiogallate. J Phys. 1970;3:183–4.

    Google Scholar 

  15. Feigelson RS. The growth of ternary semiconductor crystals suitable for device applications. J Physique. 1975;36:57–66.

    Google Scholar 

  16. Korzak P, Staff CB. Liquid encapsulated Chochralski growth of silver thiogallate. J Cryst Growth. 1974;24–25:386–9.

    Article  Google Scholar 

  17. Mochizuki K, Niwa E, Iwanaga H, Matsumoto K. Some characteristics of AgGaS2 single crystals grown from the melt. J Cryst Growth. 1993;131:41–8.

    Article  CAS  Google Scholar 

  18. Matthes H, Vienmann R, Marshall N, Korzak P. Bridgman growth of AgGaS2 with improved optical properties. J Physique. 1975;36(9):105–8.

    Google Scholar 

  19. Palatnik LS, Belova EK. Study of regularity in semiconductor systems A I2 CIV–B III2 C VI3 . Izv Akad Nauk SSSR Neorgan Materialy. 1967;3:2194–202.

    CAS  Google Scholar 

  20. Chedzey HA, Marshall DJ, Parfitt HT, Robertson DS. A study of the melt growth of single crystal thiogallates. J Phys D. 1971;4:1320–4.

    Article  CAS  Google Scholar 

  21. Treser E, Kramer V. Crystal growth of AgGaS2 by the Bridgman–Stockbarger technique using shaped crucibles. J Cryst Growth. 1993;128:661–7.

    Article  Google Scholar 

  22. Post E, Kramer V. Crystal growth of AgGaS2 by the Bridgman–Stockbarger and traveling heater methods. J Cryst Growth. 1993;129:485–90.

    Article  CAS  Google Scholar 

  23. Niwa E, Matsumoto K. Growth of AgGaS2 single crystal by a self-seeding vertical gradient method. J Cryst Growth. 1998;192:354–60.

    Article  CAS  Google Scholar 

  24. Badikov VV, Ovchinnikova TA, Pivovarov ON, Skokov YuV, Screbneva OV. Study of the single crystal growth of AgGaS2. In: Growth and doping of semiconductor crystals and films. Novosibirsk: Nauka; 1977, v. 1, pp. 193–196.

  25. Kasper HM. Formation, stoichiometry and properties of I–II–VI2 semiconducting crystals. Spec Publ Natl Bur STD. 1972;364:671–9.

    Google Scholar 

  26. Sashitai SR, Stephens RR, Lotspeich JF. A multilayer AgGaS2 structure for infrared (2–10 μm) electro-optic tunable filters: fabrication and performance. J Appl Phys. 1986;59:757–60.

    Article  Google Scholar 

  27. Nenasheva SN, Sinyakova EF. Phase diagram of system Ag2S–Ga2S3. Izv Akad Nauk SSSR. 1983;19:1622–5.

    CAS  Google Scholar 

  28. Brand G, Kramer V. Phase investigation in the silver–gallium–sulphur system. Mater Res Bull. 1976;11:1381–8.

    Article  Google Scholar 

  29. Bodnar IV, Voroshilov YuV, Karosa AG, Smirnova GF, Khudoliy VA. Study of the system AgGaS2–AgGaSe2. Izv Akad Nauk SSSR. 1979;15:763–5.

    CAS  Google Scholar 

  30. Fedorova ZhN, Sinyakova EF, Nenashev BG. Liquidus of the Ag–Ga–S system. Izv Akad Nauk SSSR. 1991;27:461–6.

    CAS  Google Scholar 

  31. Sinyakova EF, Kosyakov VI, Kokh KA. Oriented crystallization of AgGaS2 from the melt system Ag–Ga–S. Inorg Mater. 2009;45:1217–21.

    Article  CAS  Google Scholar 

  32. Kitahara EH, Ishizawa N. Synchrotron x-ray study of the monoclinic high-pressure structure of AgGaS2. Phys Rev. 2000;B61:3310–6.

    Article  Google Scholar 

  33. Reznitskiy LA. Chemical bond and oxides transformation. Moscow: Publishing House of Moscow State University; 1991.

    Google Scholar 

  34. Tiller WA, Takahashi T. The electrostatic contribution in heterogeneous nucleation. Theory Pure Liq Acta Metall. 1969;17:483–96.

    Article  CAS  Google Scholar 

  35. Mannchen W, Putterich H. Untersuchungen zur Keimbildungen in Metallschmelzen. II. Einfluss geringer Fremdelementzusätze auf die Unterkühlung von Antimonschmelzen. Z Phys Chem. 1962;220:355–78.

    CAS  Google Scholar 

  36. Fehling J, Scheil E. Untersuchungen der Unterkühlbarkeit von Metallschmelzen. Z Metallkunde. 1962;53:593–600.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by RFBR: Grant No. 07-08-00073a and No. 07-05-00113-a. Authors are indebted to Dr. V.A. Drebushchak for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Kidyarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidyarov, B.I., Nikolaev, I.V. Study into melting-crystallization of silver thiogallate by the statistical thermal analysis method. J Therm Anal Calorim 101, 5–9 (2010). https://doi.org/10.1007/s10973-010-0815-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0815-8

Keywords

Navigation