Skip to main content
Log in

Calorimetric studies of crystallization for multi-component glasses of Se–Te–Sn–Ag (STSA) system using model-free and model-fitting non-isothermal methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silver-containing chalcogenide glasses are well-known candidates for technical applications as well as for the fundamental studies. In the present report, we have studied the kinetics of glass/crystal phase transformation in novel synthesized glasses of STSA system. For this, purpose, differential scanning calorimetric technique has been employed at four different heating rates (5, 10, 15, 20 K min−1). This paper explores the thermal analysis of calorimetric data using both advanced iso-conversional methods for the determination of effective activation energy as a function of extent of crystallization and classical non-isothermal methods for the determination of over-all crystallization activation energy. Iso-conversional methods, such as Kissinger–Akahira–Sunose method and Flynn–Wall–Ozawa method, have been used to study the variation of activation energy of crystallization and other kinetic parameters with extent of crystallization. Non-isothermal methods (Kissinger method, Augis–Bennett method, and Matusita–Sakka method) have been used to determine over-all activation energy of crystallization and other significant parameter of thermally activated crystallization. We have also explained the composition dependence of various kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goryunova NA, Kolomiets BT. Glassy semiconductors IX. Glass-formation in compound chalcogenides based on arsenic sulfide and selenide. Solid State Phys. 1960;2:280–3.

    CAS  Google Scholar 

  2. Ohta T. Phase-change optical memory promotes the DVD optical disc. J Opto Adv Mater. 2001;3:609–26.

    CAS  Google Scholar 

  3. Popescu M. Disorder chalcogenide optoelectronic materials: phenomena and application. J Optoelectron Adv Mater. 2005;7:2189–210.

    CAS  Google Scholar 

  4. Hamann HF, O’Boyle M, Martin YC, Rooks M, Wickramasinghe HK. Ultra-high-density phase-change storage and memory. Nat Mater. 2006;5:383–7.

    Article  CAS  Google Scholar 

  5. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:824–33.

    Article  CAS  Google Scholar 

  6. Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M. A map for phase-change materials. Nat Mater. 2008;7:972–7.

    Article  CAS  Google Scholar 

  7. Rocca J, Fontana M, Arcondo B. Simulation of non-volatile memory cell using chalcogenide glasses. J Alloys Compd. 2012;536S:S516–21.

    Article  Google Scholar 

  8. Toupin P, Brilland L, Boussard-Pledel C, Bureau B, Mechin D, Adam JL, Troles J. Comparison between chalcogenide glass single index and micro structured exposed-core fibers for chemical sensing. J Non-Cryst Solids. 2013;377:217–9.

    Article  CAS  Google Scholar 

  9. Xu H, He Y, Wang X, Nie Q, Zhang P, Xu T, Dai S, Zhang X, Tao G. Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications. Infrared Phys Technol. 2014;65:77–82.

    Article  CAS  Google Scholar 

  10. Lucas P, Garrett JC, Jiang S, Luo T, Yang Z. Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. J Opt Mater. 2015;47:530–6.

    Article  CAS  Google Scholar 

  11. Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids. 2003;330:1–12.

    Article  CAS  Google Scholar 

  12. MehtaN KumarA. Some new observations on activation energy of crystal growth for thermally activated crystallization. J Phys Chem B. 2016;120:1175–82.

    Article  Google Scholar 

  13. Vyazovkin S. Computational aspects of kinetic analysis: part C. The ICTAC kinetics project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  14. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  16. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  17. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:181–6.

    Article  Google Scholar 

  18. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. Thermal analysis of polymer by thermogravimetric analysis. J Res Natl Bur Stand A. 1966;70:487–523.

    Article  CAS  Google Scholar 

  20. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  21. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–301.

    Article  CAS  Google Scholar 

  22. Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;443:72–6.

    Article  Google Scholar 

  23. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  24. Starink MJ. Comments on precipitation kinetics of Al–1.12Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys. J Alloys Compd. 2007;443:L4–6.

    Article  Google Scholar 

  25. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Mettal) Eng. 1939;135:416–42.

    Google Scholar 

  26. Avrami M. Kinetics of phase change I. J Phys Chem. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  27. Avrami M. Kinetics of phase change II. J Phys Chem. 1940;8:212–24.

    Article  CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  29. Matusita K, Sakka S. Kinetic study of the crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:81–4.

    CAS  Google Scholar 

  30. Matusita K, Sakka S. Kinetic study on non-isothermal crystallization of glass by thermal analysis. Bull Inst Chem Res. 1981;59:159–71.

    CAS  Google Scholar 

  31. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  32. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  33. Cui S, Boussard-Pledel C, Lucas J, Bureau B. Te-based glass fiber for far infrared sensing up to 16 μm. Opt Express. 2014;22:21253–62.

    Article  Google Scholar 

  34. Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J. Forming glasses from Se and Te. Molecules. 2009;14:4337–50.

    Article  CAS  Google Scholar 

  35. Cui S, Chahal R, Boussard-Pledel C, Nazabal V, Doualan JL, Troles J, Lucas J, Bureau B. From selenium to tellurium based glass optical fibers for infrared spectroscopies. Molecules. 2013;18:5373–88.

    Article  CAS  Google Scholar 

  36. Kumar H, Mehta N, Singh K. Calorimetric studies of thermal crystallization in glassy Se80-xTe20Snx (0 ≤ x ≤ 10) alloys. Phys Scr. 2011;83:065602.

    Article  Google Scholar 

  37. Kumar H, Mehta N. Thermal characterization of glassy Se78−xTe20Sn2Pbx (0 ≤ x ≤ 6) alloys for phase change optical recording technique. Glass Phys Chem. 2013;39:490–8.

    Article  CAS  Google Scholar 

  38. Kumar H, Mehta N. Kinematical studies of thermal crystallization in glassy Se78−xTe20Sn2Bix (0 ≤ x ≤ 6) alloys. J Adv Phys. 2013;2:163–9.

    Article  CAS  Google Scholar 

  39. Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid Stat Mater Sci. 2003;7:117–26.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on non-isothermal crystallization of a polymer melt. J Phys Chem B. 2003;107:882–8.

    Article  CAS  Google Scholar 

  42. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.

    Article  CAS  Google Scholar 

  43. Fusong J, Xu Y, Jiang M, Gan F. Film preparation and structure analysis of optical recording domains of amorphous Ge–Sb–Te. J Non-Cryst Solids. 1995;184:51–6.

    Article  Google Scholar 

  44. Chou LH, Kuo MC. Thin InSb films—a candidate for multiple recording. J Appl Phys. 1995;77:1964–8.

    Article  CAS  Google Scholar 

  45. Chiba R, Funakoshi N. Crystallization of vacuum deposited Te–Se–Cu alloy film. J Non-Cryst Solids. 1988;105:149–54.

    Article  CAS  Google Scholar 

  46. Petford-Long AK, Doole RC, Afonso CN, Solis J. In situ studies of the crystallization kinetics in Sb–Ge films. J Appl Phys. 1995;77:607–13.

    Article  CAS  Google Scholar 

  47. Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of us, NM is grateful to the Board of Research in Nuclear Sciences (BRNS), Mumbai, India for providing financial support under DAE Research Award for Young Scientists (Scheme No. 2011/20/37P/02/BRNS) and Banaras Hindu University for providing financial support under DST-Purse programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Chandel, N. & Mehta, N. Calorimetric studies of crystallization for multi-component glasses of Se–Te–Sn–Ag (STSA) system using model-free and model-fitting non-isothermal methods. J Therm Anal Calorim 128, 907–914 (2017). https://doi.org/10.1007/s10973-016-6019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6019-0

Keywords

Navigation