Skip to main content
Log in

Structure-Sensitive Properties of Melts and Thermal Properties of Glasses in the B2O3–CaO–Al2O3–PbO System

  • Published:
Inorganic Materials Aims and scope

Abstract—

The devitrification, “cold” crystallization, and glass transition temperatures and melting point of samples in the B2O3–CaO–Al2O3–PbO system have been determined by differential thermal analysis. The viscosity of aluminum calcium borate melts containing up to 6.9% PbO has been measured in the temperature range 1153–1573 K. The results demonstrate that lead oxide additions reduce melt viscosity and that the density and surface tension of the melts increase with increasing lead oxide content and decrease with increasing temperature. High- and low-temperature regions have been identified where the melts have properties of Newtonian fluids. Cooling leads to polymerization and vitrification of the melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nemilov, S.V., Viscosity of borate glass-forming melts: specific features of the BO4 tetrahedron as a kinetic unit, Glass Phys. Chem., 1997, vol. 23, no. 1, pp. 1–26.

    CAS  Google Scholar 

  2. Selivanov, E.N., Vusikhis, A.S., Sergeeva, S.V., Gulyaeva, R.I., and Ryabov, V.V., Thermal properties of glass and melts of the CaO – B2O3 – Al2O3 – CuO system, Glass Phys. Chem., 2021, vol. 47, no. 2, pp. 97–103.https://doi.org/10.1134/S1087659621020115

    Article  CAS  Google Scholar 

  3. Klyuev, V.P. and Pevzner, B.Z., Thermal expansion and glass transition temperature of calcium borate and calcium aluminoborate glasses, Glass Phys. Chem., 2003, vol. 29, no. 2, pp. 127–136.https://doi.org/10.1023/A:1023498823701

    Article  CAS  Google Scholar 

  4. Mohajerani, A., Martin, V., Boyd, D., and Zwanziger, J.W., On the mechanical properties of lead borate glass, J. Non-Cryst. Solids, 2013, vol. 381, pp. 29–34.https://doi.org/10.1016/j.jnoncrysol.2013.09.015

    Article  CAS  Google Scholar 

  5. Bobkova, N.M., Borate glass as a key component of low-melting-point low-lead glazes, fluxes, and solders, Izv. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, 2002, no. 4, pp. 14–17.

  6. Eremyashev, V.E. and Osipova, L.M., Luminescence characteristics of alkali borate glasses, Steklo Keram., 2010, no. 10, pp. 22–24.

  7. Pastukhov, E.A., Denisov, V.M., Bakhvalov, S.G., Physicochemical properties of fluxes intended for single-crystal growth of unstable compound semiconductors, in Fizicheskaya khimiya i tekhnologiya v metallurgii (Physical Chemistry and Technology in Metallurgy), Yekaterinburg, 1996, pp. 176–183.

    Google Scholar 

  8. Ye, N., Zhang, Y., Chen, W., Keszler, D., and Aka, G., Growth of nonlinear optical crystal Y0.57La0.72Sc2.71(BO3)4, J. Cryst. Growth, 2006, vol. 292, no. 2, pp. 464–467.https://doi.org/10.1016/j.jcrysgro.2006.04.055

    Article  CAS  Google Scholar 

  9. Li, W., Huang, L., Zhang, G., and Ye, N., Growth and characterization of nonlinear optical crystal Lu0.66La0.95Sc2.39(BO3)4, J. Cryst. Growth, 2007, vol. 307, no. 2, pp. 405–409.https://doi.org/10.1016/j.jcrysgro.2007.07.017

    Article  CAS  Google Scholar 

  10. Fedorova, M.V., Kononova, N.G., Kokh, A.E., and Shevchenko, V.S., Growth of MBO3 (M = La, Y, Sc) and LaSc3(BO3)4 crystals from LiBO2–LiF fluxes, Inorg. Mater., 2013, vol. 49, no. 5, pp. 482–486.https://doi.org/10.1134/S002016851304002X

    Article  CAS  Google Scholar 

  11. Geodakyan, D.A., Petrosyan, B.V., Stepanyan, S.V., Vardanyan, R.A., and Geodakyan, K.D., Low-melting-point lead-containing glasses, Izv. NAN RA GIUA, Ser. TN, 2007, vol. 60, no. 3.

  12. Babenko, A.A., Shartdinov, R.R., Upolovnikova, A.G., Smetannikov, A.N., and Gulyakov, V.S., Physical properties of CaO–SiO2–B2O3 slags containing 15% Al2O3 and 8% MgO, Steel Transl., 2019, vol. 49, no. 10, pp. 667–670.https://doi.org/10.3103/S0967091219100036

    Article  Google Scholar 

  13. Kim, A.S., Akberdin, A.A., Sultangaziev, R.B., and Kireeva, G.M., Evaluation of the efficiency of application of high-basic boron-containing slags in melting of economically alloyed boron-containing steels, Metallurgist, 2018, nos. 1–2, pp. 34–38.https://doi.org/10.1007/s11015-018-0622-1

  14. Belousov, A.A., Selivanov, E.N., Belyaev, V.V., and Litovskikh, S.N., Application of boron-containing fluxes for improving the quality of crude copper, Tsvetn. Metall., 2003, no. 10, pp. 13–17.

  15. Denisov, V.M., Belousova, N.V., Istomin, S.A., Bakhvalov, S.G., and Pastukhov, E.A., Stroenie i svoistva rasplavlennykh oksidov (Structure and Properties of Molten Oxides), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1999.

  16. Slag Atlas, Dusseldorf: Stahleisen, 1995, 2nd ed.

  17. Rusakov, M.R., High-rate electrical melting and high-rate slag depletion processes, in Novye protsessy v metallurgii nikelya, medi i kobal’ta. Nauchnye trudy instituta Gipronikel’ (Novel Processes in Nickel, Copper, and Cobalt Metallurgy: Scientific Papers of Gipronikel Institute), Moscow: Ruda i Metally, 2000, pp. 126–138.

  18. Biswas, K., Sontakke, A.D., Majumder, M., and Annapurna, K., Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass, J. Therm. Anal. Calorim., 2010, vol. 101, pp. 143–151.https://doi.org/10.1007/s10973-009-0450-4

    Article  CAS  Google Scholar 

  19. Morokhov, P.V., Anan’in, V.M., Ivannikov, A.A., Sevryukov, O.N., and Suchkov, A.N., Three-dimensional liquid–liquid immiscibility effect and its manifestations in viscometry and differential thermal analysis, Tsvetn. Met., 2014, no. 12, pp. 38–44.

  20. Bubnova, R.S. and Filatov, S.K., Vysokotemperaturnaya kristallokhimiya boratov i borosilikatov (High-Temperature Crystal Chemistry of Borates and Borosilicates), St. Petersburg: Nauka, 2008.

  21. Osipov, A.A., Osipova, L.M., and Bykov, V.M., Spektroskopiya i struktura shchelochnoboratnykh stekol i rasplavov (Spectroscopy and Structure of Alkali Borate Glasses and Melts), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2009.

  22. Istomin, S.A., Khokhryakov, A.A., Ivanov, A.V., Chentsov, V.P., and Ryabov, V.V., Effect of lanthanide group REM oxides activated mechanically on the surface tension of borate melts, Russ. Metall. (Engl. Transl.), 2015, vol. 2015, no. 2, pp. 85–90.

  23. Ivanov, A.V., Istomin, S.A., Khokhryakov, A.A., Chentsov, V.P., and Ryabov, V.V., Effect of the mechanical activation of Ln2O3 oxides (with Ln = Gd, Dy, Ho, and Lu) on the surface tension and density of borate melts, Russ. Metall. (Engl. Transl.), 2012, vol. 2012, no. 8, pp. 730–735.

  24. Knyazyan, N.B., Detailed structure of borate and aluminoborate glasses, Khim. Zh. Arm., 2001, vol. 54, nos. 1–2, pp. 36–46.

    CAS  Google Scholar 

  25. Golubkov, V.V., Structural inhomogeneity of vitreous B2O3, Glass Phys. Chem., 1996, vol. 22, no. 3, pp. 178–185.

    CAS  Google Scholar 

  26. Chentsov, V.P., Shevchenko, V.G., Mozgowoi, A.G., and Pokrasin, M.A., Density and surface tension of heavy liquid-metal coolants: gallium and indium, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 5, pp. 468–473.https://doi.org/10.1134/S2075113311050108

    Article  Google Scholar 

  27. Gladkikh, V.N., Viskozimetriya metallurgicheskikh rasplavov (Viscometry of Metallurgical Melts), Moscow: Metallurgiya, 1989.

  28. Istomin, S.A., Ivanov, A.V., Ryabov, V.V., and Pastukhov, E.A., Effect of mechanical activation of rare-earth metal oxides on the viscosity of borate melts, Russ. Metall. (Engl. Transl.), 2011, no. 4, pp. 109–113.

  29. Selivanov, E., Gulyaeva, R., Istomin, S., Belyaev, V., Tyushnyakov, S., and Bykov, A., Viscosity and thermal properties of slag in the process of autogenous smelting of copper–zinc concentrates, Trans. Inst. Min. Metall., Sect. C, 2015, vol. 124, no. 2, pp. 88–95.https://doi.org/10.1179/1743285514Y.0000000078

    Article  CAS  Google Scholar 

  30. NETZSCH Proteus Software, Thermal Analysis, Version 4.8.3.

  31. Metveenko, V.N. and Kirsanov, E.A., Structural viscosity and structural elasticity of polymer melts, Russ. J. Appl. Chem., 2018, vol. 91, no. 5, pp. 839–865.https://doi.org/10.1134/S1070427218050166

    Article  Google Scholar 

  32. Guloyan, Yu.A., Fiziko-khimicheskie osnovy tekhnologii stekla (Physicochemical Principles of Glass Technology), Vladimir: Tranzit-IKS, 2008.

  33. Mazelev, L.Ya., Boratnye stekla (Borate Glasses), Minsk: Akad. Nauk BSSR, 1958.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-24093 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sergeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vusikhis, A.S., Sergeeva, S.V., Gulyaeva, R.I. et al. Structure-Sensitive Properties of Melts and Thermal Properties of Glasses in the B2O3–CaO–Al2O3–PbO System. Inorg Mater 58, 97–103 (2022). https://doi.org/10.1134/S0020168522010149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010149

Keywords:

Navigation