Skip to main content
Log in

Thermal behavior of water in micro-particles based on alginate gel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Alginate has been established as a very versatile material in the preparation of hydrogel capsules for trapping therapeutic biomolecules and cells. The physico-chemical properties, the mechanism and the processing of gel formation are now well established. In the frame of a project aiming at the exploitation of encapsulation of therapeutic proteins in alginate gel particles, the procedure of preparation, characterization, gel-drying and re-hydrating has been explored for the shelf-life of the encapsulated biomolecules. Here, the results of a calorimetric study on the freezing and dehydration process of alginate micro-capsules is presented. The work aims at the description of water state(s) and its removal under “controlled conditions” in the presence of bioprotectant sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haug A, Smidsrod O. Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand. 1970;24:843–54.

    Article  CAS  Google Scholar 

  2. Kohn R. Ion binding on polyuronates—alginate and pectin. Pure Appl Chem. 1975;42:371–97.

    Article  CAS  Google Scholar 

  3. Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Braek G. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules. 2005;6:1031–40.

    Article  CAS  Google Scholar 

  4. Rees DA. Polysaccharide shapes—outline studies in biology. London: Chapman and Hall; 1977. p. 1–110.

    Google Scholar 

  5. Painter TJ. In: Aspinall GO, editor. The polysaccharides, vol. 2. New York: Academic Press; 1983. p. 196–285.

  6. Donati I, Benegas JC, Cesàro A, Paoletti S. Specific interactions versus counterion condensation, 2: theoretical treatment within the counterion condensation theory. Biomacromolecules. 2006;7:1587–96.

    Article  CAS  Google Scholar 

  7. Cesàro A, Delben F, Paoletti S. Interaction of divalent cations with polyuronates. J Chem Soc, Faraday Trans. 1988;84:2573–84.

    Article  Google Scholar 

  8. Hatakeyama H, Hatakeyama T. Interaction between water and hydrophilic polymers. Thermochim Acta. 1998;308:3–22.

    Article  CAS  Google Scholar 

  9. Takahashi M, Hatakeyama T, Hatakeyama H. Phenomenological theory describing the behaviour of non-freezing water in structure formation process of polysaccharide aqueous solutions. Carbohydr Polym. 2000;41:91–5.

    Article  CAS  Google Scholar 

  10. Monaselidze J, Kiladze M, Tananashvili D, Barbakadze S, Naskidashvili A, Khizanishvili A, et al. Free and bound water influence on Spirulina platensis serviva. J Therm Anal Calorim. 2006;84:613–18.

    Article  CAS  Google Scholar 

  11. Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 2007;18:184–90.

    Article  CAS  Google Scholar 

  12. Ubbink J, Krüger J. Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol. 2006;17:244–54.

    Article  CAS  Google Scholar 

  13. Manojlovic V, Rajic N, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Application of electrostatic extrusion—flavour encapsulation and controlled release. Sensors. 2008;8:1488–96.

    Article  CAS  Google Scholar 

  14. Kaushik JK, Bath R. Why is trehalose an exceptional protein stabilizer? J Biol Chem. 2003;278:26458–65.

    Article  CAS  Google Scholar 

  15. Cesàro A, De Giacomo O, Sussich F. Water interplay in trehalose polymorphism. Food Chem. 2008;106:1318–28.

    Article  Google Scholar 

  16. Borgogna M, Bellich B, Zorzin L, Lapasin R, Cesàro A. Food microencapsulation of bioactive compounds: rheological and thermal characterisation of nonconventional gelling system. Food Chem. 2009. doi:10.1016/j.foodchem.2009.07.043.

  17. Gombotz WR, Pettit DK. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 1995;6:332–51.

    Article  CAS  Google Scholar 

  18. Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J Microencapsul. 2006;23:245–57.

    Article  CAS  Google Scholar 

  19. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    Article  CAS  Google Scholar 

  20. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006;17:272–83.

    Article  CAS  Google Scholar 

  21. Martins S, Sarmento B, Souto EB, Ferreira DC. Insulin-loaded alginate microspheres for oral delivery—effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym. 2007;69:725–31.

    Article  CAS  Google Scholar 

  22. Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods. 2004;56:27–35.

    Article  CAS  Google Scholar 

  23. Mutalik V, Manjeshwar LS, Wali A, Sairam M, Raju KVSN, Aminabhavi TM. Thermodynamics/hydrodynamics of aqueous polymer solutions and dynamic mechanical characterization of solid films of chitosan, sodium alginate, guar gum, hydroxy ethyl cellulose and hydroxypropyl methylcellulose at different temperatures. Carbohydr Polym. 2006;65:9–21.

    Article  CAS  Google Scholar 

  24. Faroongsarng D, Sukonrat P. Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels. Int J Pharm. 2008;352:152–8.

    Article  CAS  Google Scholar 

  25. Hay JN, Laity PR. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000;41:6171–80.

    Article  CAS  Google Scholar 

  26. Thu B, Skjåk-Bræk G, Micali F, Vittur F, Rizzo F. The spatial distribution of calcium in alginate gel beads analysed by synchrotronradiation induced X-ray emission (SRIXE). Carbohydr Res. 1997;297:101–5.

    Article  CAS  Google Scholar 

  27. Rault J, Gref R, Ping ZH, Nguyen QT, Neel J. Glass transition temperature regulation effect in a poly(vinyl alcohol)-water system. Polymer. 1995;36:1655–61.

    Article  CAS  Google Scholar 

  28. Nakamura K, Nishimura Y, Hatakeyama T, Hatakeyama H. Thermal properties of water insoluble alginate films containing di- and trivalent cations. Thermochim Acta. 1995;267:343–53.

    Article  CAS  Google Scholar 

  29. Buitink J, Leprince O. Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology. 2004;48:215–28.

    Article  CAS  Google Scholar 

  30. Sussich F. Trehalose polymorphism and its role in anhydrobiosis. Ph.D. Thesis, University of Trieste; 2004.

  31. Sussich F, Bortoluzzi S, Cesàro A. Trehalose dehydration under confined conditions. Thermochim Acta. 2002;391:137–50.

    Article  CAS  Google Scholar 

  32. Sussich F, Cesàro A. Transitions and phenomenology of α,α-trehalose polymorphs inter-conversion. J Therm Anal Calorim. 2000;62:757–68.

    Article  CAS  Google Scholar 

  33. Ping H, Nguyen QT, Chen SM, Zhou JQ, Ding YD. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer. 2001;42:8461–7.

    Article  CAS  Google Scholar 

  34. Lewicki PP. Water as the determinant of food engineering properties. A review. J Food Eng. 2004;61:483–95.

    Article  Google Scholar 

Download references

Acknowledgements

The present results have been achieved in part within the EU Project FP6 NanoBioPharmaceutics (NMP 026723-2). M.B. is recipient of a University Grant from University of Trieste (Progetto Giovani Ricercatori 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Bellich.

Additional information

Barbara Bellich and Massimiliano Borgogna are contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellich, B., Borgogna, M., Carnio, D. et al. Thermal behavior of water in micro-particles based on alginate gel. J Therm Anal Calorim 97, 871–878 (2009). https://doi.org/10.1007/s10973-009-0392-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0392-x

Keywords

Navigation